Skip to main content
Log in

Tracing the roots of wetland degradation in India: a systematic review of anthropogenic drivers, ecological consequences and conservation strategies

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

India's wetlands, estimated to cover 15.26 million hectares, have experienced significant degradation due to human activities. Urbanization, population growth, land transformation, encroachment, and pollution have all contributed to the shrinking of wetlands, which were earlier estimated to be 58.2 million hectares. This review analyzes the root causes of wetland degradation in India, providing insights from more than 100 studies conducted over the last four decades. It also examines the impacts of population growth, urbanization, land transformation, encroachment, and pollution on wetlands, and their associated ecological consequences. The paper highlights the need for conservation and management efforts to protect these vital ecosystems, which provide numerous benefits to human societies and biodiversity. From the above review, it can be inferred that approximately 64% of wetlands have suffered degradation in terms of wetland coverage as a result of these drivers. Additionally, metropolitan areas are experiencing a continuous reduction in wetland size due to overpopulation and urbanization, which serve as the primary contributing factors. The majority of research conducted on wetlands in India concentrates on the ecological and environmental aspects of the wetland ecosystem. Moreover, the physical factors, such as alterations in land use within the catchment area, and the socio-economic factors, including population growth and changes in economic activities, which lead to modifications in wetland surroundings, have not been extensively investigated. So, there is a necessity for further research to be conducted on the physical, socio-economic, and conservation aspects that influence the state of wetlands and their utilization. Also, this research calls for the development of more effective and comprehensive management strategies in response to escalating stress from various climatic and particularly anthropogenic factors, because the governmental and scholarly attention towards wetland management policies, rules, regulations, and organizations has only recently emerged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Ministry of Environment and Forest, GOI (2022–23)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Source: WISA 2014, Down to Earth, 2014

Fig. 8

Source: Adopted and modified from (Mohan Rajan et al., 2020) and (Pathan et al., 2008)

Similar content being viewed by others

References

  • A Down To Earth Annual- The State of India’s Environment. (2014). https://www.downtoearth.org.in/reviews/a-down-to-earth-annual-the-state-of-india-s-environment-2014-50434. Accessed November 26, 2022.

  • Agyapong, E. B., Ashiagbor, G., Nsor, C. A., & van Leeuwen, L. M. (2018). Urban land transformations and its implication on tree abundance distribution and richness in Kumasi, Ghana. Journal of Urban Ecology, 4(1), juy019.

    Google Scholar 

  • Ahmad, W. S., Jamal, S., Taqi, M., El-Hamid, H. T. A., & Norboo, J. (2022). Estimation of soil erosion and sediment yield concentrations in Dudhganga watershed of Kashmir Valley using RUSLE & SDR model. Environment, Development and Sustainability, 1–24. https://doi.org/10.1007/s10668-022-02705-9

  • Ahmad, W. S., Kaloop, M. R., Jamal, S., Taqi, M., Hu, J. W., et al. (2024). An analysis of LULC changes for understanding the impact of anthropogenic activities on food security: a case study of Dudhganga watershed, India. Environmental Monitoring and Assessment, 196(1), 105.

  • Ajibola, M. O., Adeleke, A. M., & Ogungbemi, A. O. (2016). An assessment of wetland loss in Lagos Metropolis, Nigeria. Developing Country Studies, 6(7), 1–7.

    Google Scholar 

  • Anand, V., & Oinam, B. (2020). Future land use land cover prediction with special emphasis on urbanization and wetlands. Remote Sensing Letters, 11(3), 225–234.

    Google Scholar 

  • Appiah, D. O., & Yankson, D. (2012). Anthropogenic Drivers of the Pressures on the Ramsar Site of Sakumo Lagoon in Ghana. International Journal of Technology and Management Research, 1(1), 48–56.

    Google Scholar 

  • Aslam, A., Parthasarathy, P., & Ranjan, R. K. (2021). Ecological and societal importance of wetlands: a case study of North Bihar (India). In Wetlands Conservation: Current Challenges and Future Strategies (pp. 55–86). Hoboken: John Wiley & Sons, Ltd.

  • Atasoy, M., Palmquist, R. B., & Phaneuf, D. J. (2006). Estimating the effects of urban residential development on water quality using microdata. Journal of Environmental Management, 79(4), 399–408.

    CAS  PubMed  Google Scholar 

  • Barbier, E. B., Acreman, M., & Knowler, D. (1997). Economic valuation of wetlands: a guide for policy makers and planners. Ramsar Convention Bureau.

    Google Scholar 

  • Bassi, N., & Kumar, M. D. (2012). Addressing the civic challenges: Perspective on institutional change for sustainable urban water management in India. Environment and Urbanization Asia, 3(1), 165–183.

    Google Scholar 

  • Bassi, N., Kumar, M. D., Sharma, A., & Pardha-Saradhi, P. (2014). Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. Journal of Hydrology: Regional Studies, 2, 1–19.

    Google Scholar 

  • Behera, D. K., Jamal, S., Ahmad, W. S., Taqi, M., & Kumar, R. (2023). Estimation of soil erosion using RUSLE Model and GIS tools: A study of chilika lake, Odisha. Journal of the Geological Society of India, 99(3), 406–414.

    Google Scholar 

  • Bhowmik, S. (2022). Ecological and economic importance of wetlands and their vulnerability: a review. Research Anthology on Ecosystem Conservation and Preserving Biodiversity, 11–27.

  • Boyd, J., & Banzhaf, S. (2007). What are ecosystem services? The need for standardized environmental accounting units. Ecological Economics, 63(2–3), 616–626.

    Google Scholar 

  • Brinson, M. M., & Malvárez, A. I. (2002). Temperate freshwater wetlands: Types, status, and threats. Environmental Conservation, 29(2), 115–133.

    Google Scholar 

  • Byström, O., Andersson, H., & Gren, M. (2000). Economic criteria for using wetlands as nitrogen sinks under uncertainty. Ecological Economics, 35(1), 35–45.

    Google Scholar 

  • Callaway, J. C., Borgnis, E. L., Turner, R. E., & Milan, C. S. (2012). Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts, 35, 1163–1181.

    CAS  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.

    Google Scholar 

  • Census of India-2011. https://www.census2011.co.in. Accessed November 25, 2022.

  • Centre, S. A., & Space, I. (2021). Space Based Observation ISRO. https://vedas.sac.gov.in/vcms/en/Space_Based_Observation_of_Indian_Wetlands.html. Accessed 5 Oct 2022.

  • Chopra, R. (1985). The State of India’s environment. Ambassador Press.

    Google Scholar 

  • Chopra, R., Verma, V. K., & Sharma, P. K. (2001). Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab, India, through remote sensing. International Journal of Remote Sensing, 22(1), 89–98.

    ADS  Google Scholar 

  • Coastal Zone Regulation Notification. (1991). https://environmentclearance.nic.in/writereaddata/SCZMADocument/CRZ%20Notification,%201991.pdf. Accessed November 29, 2023.

  • Dandekar, P., Bhattacharya, S., & Thakkar, H. (2011). Wetland (Conservation and Management) Rules 2010, welcome, but a lost opportunity: this cannot help protect the wetlands, Sir. New Delhi: South Asia Network on Dams, Rivers & People.

  • Dar, S. A., Bhat, S. U., Aneaus, S., & Rashid, I. (2020). A geospatial approach for limnological characterization of Nigeen Lake, Kashmir Himalaya. Environmental Monitoring and Assessment, 192, 1–18.

  • Dar, S. A., Hamid, A., Rashid, I., & Bhat, S. U. (2021). Identification of anthropogenic contribution to wetland degradation: Insights from the environmetric techniques. Stochastic Environmental Research and Risk Assessment, 1–15.

  • Das, R. T., & Pal, S. (2018). Investigation of the principal vectors of wetland loss in Barind tract of West Bengal. GeoJournal, 83(5), 1115–1131.

    Google Scholar 

  • Das, B. K., Roy, A., Som, S., Chandra, G., Kumari, S., Sarkar, U. K., Bhattacharjya, B. K., Das, A. K., & Pandit, A. (2022). Impact of COVID-19 lockdown on small-scale fishers (SSF) engaged in floodplain wetland fisheries: Evidences from three states in India. Environmental Science and Pollution Research, 29(6), 8452–8463.

    CAS  PubMed  Google Scholar 

  • de Almeida, L. T., Olímpio, J. L. S., Pantalena, A. F., de Almeida, B. S., & de Oliveira Soares, M. (2016). Evaluating ten years of management effectiveness in a mangrove protected area. Ocean & Coastal Management, 125, 29–37.

    Google Scholar 

  • De Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., ... & Hussain, S. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1(1), 50–61

  • Down to Earth. (2023). https://www.downtoearth.org.in/news/wildlife-biodiversity/budget-2023-24-amrit-dharohar-to-encourage-conservation-of-vital-wetlands-in-india-87429. Accessed 27 Nov 2023.

  • Environment (Protection) Amendment Rules. (2021). http://www.indiaenvironmentportal.org.in/content/470845/environment-protection-amendment-rules-2021/. Accessed November 26, 2022.

  • Erwin, K. L. (2009). Wetlands and global climate change: The role of wetland restoration in a changing world. Wetlands Ecology and Management, 17(1), 71–84.

    Google Scholar 

  • Finlayson, C. M., & van der Valk, A. G. (1995). Wetland classification and inventory: A summary. Vegetatio, 118(1), 185–192.

    Google Scholar 

  • Fluteau, F. (2003). Earth dynamics and climate changes. Comptes Rendus Geoscience, 335(1), 157–174.

    ADS  Google Scholar 

  • Ganaie, T. A., Sahana, M., & Hashia, H. (2018). Assessing and monitoring the human influence on water quality in response to land transformation within Wular environs of Kashmir Valley. GeoJournal, 83(5), 1091–1113.

    Google Scholar 

  • Ganaie, T. A., Jamal, S., & Ahmad, W. S. (2021). Changing land use/land cover patterns and growing human population in Wular catchment of Kashmir Valley, India. Geojournal, 86(4), 1589–1606.

    Google Scholar 

  • Goldewijk, K. K., & Ramankutty, N. (2009). Land use changes during the past 300 years. Land-Use, Land Cover and Soil Sciences, 1, 147–168.

    Google Scholar 

  • Government of India Ministry of Water Resources National Water Policy. (2012). https://nwm.gov.in/sites/default/files/national%20water%20policy%202012_0.pdf. Accessed November 27, 2023.

  • Huu Nguyen, H., Dargusch, P., Moss, P., & Tran, D. B. (2016). A review of the drivers of 200 years of wetland degradation in the Mekong Delta of Vietnam. Regional Environmental Change, 16(8), 2303–2315. https://vedas.sac.gov.in/vcms/en/National_Wetland_Inventory_and_Assessment_(NWIA)_Atlas.html. Accessed 25 Nov 2022.

  • Jamal, S., & Ahmad, W. S. (2020). Assessing land use land cover dynamics of wetland ecosystems using Landsat satellite data. SN Applied Sciences, 2, 1–24.

    Google Scholar 

  • Jamal, S., Ahmad, W. S., Ali, A., & Sharma, A. (2019). Monitoring land use/land cover change detection and urban expansion with Remote Sensing and GIS techniques in Anantnag District of Kashmir Valley. The Geographer, 66(1), 60–69.

    Google Scholar 

  • Jamal, S., Ahmad, W. S., Ajmal, U., Aaquib, M., Ashif Ali, M., Babor Ali, M., & Ahmed, S. (2022a). An integrated approach for determining the anthropogenic stress responsible for degradation of a Ramsar Site-Wular Lake in Kashmir, India. Marine Geodesy, 45(4), 407–434.

    ADS  Google Scholar 

  • Jamal, S., Malik, I. H., & Ahmad, W. S. (2022b). Dynamics of urban land use and its impact on land surface temperature (LST) in Aligarh City, Uttar Pradesh. In Re-envisioning advances in remote sensing (pp. 25–40). CRC Press.

  • Jamal, S., Saqib, M., Ahmad, W. S., Ahmad, M., Ali, M. A., & Ali, M. B. (2023). Unraveling the complexities of land transformation and its impact on urban sustainability through land surface temperature analysis. Applied Geomatics, 15(3), 719–741.

    Google Scholar 

  • Jayanthi, M., NilaRekha, P., Kavitha, N., & Ravichandran, P. (2006). Assessment of impact of aquaculture on Kolleru Lake (India) using remote sensing and Geographical Information System. Aquaculture Research, 37(16), 1617–1626.

    Google Scholar 

  • Jha, V., Verma, A. B., Jha, P., Jha, M., & Kumar, R. (2014). Wetlands in North Bihar provide a basis to its sustainable development. Journal of Aquatic Biology and Fisheries, 2, 843–851.

    Google Scholar 

  • Johnson, W. C., Millett, B. V., Gilmanov, T., Voldseth, R. A., Guntenspergen, G. R., & Naugle, D. E. (2005). Vulnerability of Northern Prairie wetlands to climate change. BioScience, 55(10), 863.

    Google Scholar 

  • Kobayashi, Y., Higa, M., Higashiyama, K., & Nakamura, F. (2020). Drivers of land-use changes in societies with decreasing populations: A comparison of the factors affecting farmland abandonment in a food production area in Japan. PLoS ONE, 15(7), e0235846.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, D., & Choudhury, M. (2021). Recognizing economic values of wetland ecosystem services: A study of emerging role of monetary evaluation of Chandubi ecosystem and biodiversity. Wetlands Conservation: Current Challenges and Future Strategies, 87–110.

  • Kumar, M. D., Patel, A., Ravindranath, R., & Singh, O. P. (2008). Chasing a mirage: water harvesting and artificial recharge in naturally water-scarce regions. Economic and Political weekly, 61–71.

  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., & Xu, J. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269.

    Google Scholar 

  • Li, J., Jiang, M., Pei, J., Fang, C., Li, B., & Nie, M. (2023). Convergence of carbon sink magnitude and water table depth in global wetlands. Ecology Letters, 26(5), 797–804.

    PubMed  Google Scholar 

  • Liu, J., & Diamond, J. (2005). China’s environment in a globalizing world. Nature, 435(7046), 1179–1186.

    ADS  CAS  PubMed  Google Scholar 

  • Liu, J., Zhang, Z., Xu, X., et al. (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20(4), 483–494.

    Google Scholar 

  • Ma, T., Li, X., Bai, J., Ding, S., Zhou, F., & Cui, B. (2019). Four decades’ dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China. Science of the Total Environment, 655, 741–750.

    ADS  CAS  PubMed  Google Scholar 

  • Malekmohammadi, B., & Jahanishakib, F. (2017). Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecological Indicators, 82(March 2016), 293–303.

    Google Scholar 

  • Maltby, E., Hogan, D. V., McInnes, R. J. (1996). Functional Analysis of European Wetland Ecosystems — Phase I (FAEWE). Ecosystems Research Report 18. Office for Official Publications of the European Communities, 448 pp, Luxembourg.

  • Mao, D., Luo, L., Wang, Z., Wilson, M. C., Zeng, Y., Wu, B., & Wu, J. (2018). Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis. Science of the Total Environment, 634, 550–560.

    ADS  CAS  PubMed  Google Scholar 

  • Marzluff, J. M., & Ewing, K. (2001). Restoration of fragmented landscapes for the conservation of birds: a general framework and specific recommendations for urbanizing landscapes. Restoration Ecology, 9(3), 280–292.

    Google Scholar 

  • McAllister, D. E., Craig, J. F., Davidson, N., Delany, S., & Seddon, M. (2001). Biodiversity impacts of large dams. Background paper, 1.

  • Ministry of Environment and Forests. (2007). Conservation of wetlands in India: A profile (approach and guidelines). MoEF. https://moef.gov.in/wp-content/uploads/2020/01/final-version-and-printed-wetland-guidelines-rules-2017-03.01.20.pdf. Accessed 29 Nov 2023.

  • Ministry of Environment and Forests. (2012). https://moef.gov.in/wp-content/uploads/2018/04/AR-11-12-En.pdf. Accessed 30 Nov 2023.

  • Ministry of Environment and Forests. (2022). https://moef.gov.in/wp-content/uploads/2023/05/Annual-Report-English-2022-23.pdf. Accessed 29 Nov 2023.

  • Mitsch, W. J., Wu, X., Nairn, R. W., Weihe, P. E., Wang, N., Deal, R., & Boucher, C. E. (1998). Creating and restoring wetlands. BioScience, 48(12), 1019–1030.

    Google Scholar 

  • Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., Jørgensen, S. E., & Brix, H. (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28(4), 583–597.

    Google Scholar 

  • Mitsch, W. J., Gosselink, J. G., Zhang, L., & Anderson, C. J. (2007). Wetland ecosystems. John Wiley & Sons.

  • Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., ... & Hernandez, M. E. (2012). Wetlands, carbon, and climate change. Landscape Ecology, 28(4), 583–597.

  • Mohan Rajan, S. N., Loganathan, A., & Manoharan, P. (2020). Survey on land use/land cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and challenges. Environmental Science and Pollution Research, 27(24), 29900–29926.

    PubMed  Google Scholar 

  • Mondal, B., Dolui, G., Pramanik, M., Maity, S., Biswas, S. S., & Pal, R. (2017). Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecological Indicators, 83(July), 62–73.

    CAS  Google Scholar 

  • MoWR. (2012). Ministry of Water Resources (MoWR) National Water Policy. https://nwm.gov.in/sites/default/files/national%20water%20policy%202012_0.pdf. Accessed 30 Nov 2023.

  • Mozumder, C., & Tripathi, N. K. (2014). Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland Deepor Beel in Northeast India using a multi-layer perceptron neural network. International Journal of Applied Earth Observation and Geoinformation, 32, 92–104.

    ADS  Google Scholar 

  • Naimul, S. (2017). Munich Personal RePEc Archive Economic Valuation of Rural Wetlands and Household Food Security : A Case Study from the North-West Bangladesh Economic Valuation of Rural Wetlands and Household Food Security : 77068. https://mpra.ub.uni-muenchen.de/id/eprint/77068. Accessed 24 Nov 2022.

  • National Conservation Strategy and Policy Statement on Environment and Development Government of India Ministry of Environment & Forest. (1992, June). https://moef.gov.in/wp-content/uploads/2017/07/introduction-csps.pdf. Accessed November 28, 2023.

  • National Water Policy. (2002). Government of India Ministry of water Resources. https://faolex.fao.org/docs/pdf/ind190198.pdf. Accessed November 29, 2023.

  • National Wetland Atlas. (2011). https://saconenvis.nic.in/publication%5CNWIA_National_atlas.pdf. Accessed 30 Nov 2023.

  • National Wildlife Federation. (2021). https://www.nwf.org/Our-Work/Wildlife-Conservation. Accessed November 26, 2022.

  • Pathan, S., Yadav, P., Gaurav Jain, Shah, P., Thakker, N., Matieda, I., Arunachalam, A., Jagannathan, K., & Prof, A. (2008). Conceptualisation, design and organisation of natural resources data base.

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32(1), 333–365.

    Google Scholar 

  • Prasad, S. N., Ramachandra, T. V., Ahalya, N., Sengupta, T., Kumar, A., Tiwari, A. K., & Vijayan, L. (2002). Conservation of wetlands of India-a review. Tropical Ecology, 43(1), 173–186.

    Google Scholar 

  • Ragavan, P., Kathiresan, K., Mohan, P. M., Ravichandran, K., Jayaraj, R. S. C., & Rana, T. S. (2021). Ensuring the adaptive potential of Coastal wetlands of India-the need of the hour for sustainable management. Wetlands Ecology and Management, 29, 641–652.

    Google Scholar 

  • Ramsar convention, Iran. (1971). https://www.ramsar.org. Accessed October 25, 2022.

  • Ramsar Convention Secretariat. (2008). An introduction to the ramsar convention on wetlands. https://www.ramsar.org/sites/default/files/documents/library/handbook1_5ed_introductiontoconvention_e.pdf. Accessed October 25, 2022.

  • Rashid, I., & Aneaus, S. (2020). Landscape transformation of an urban wetland in Kashmir Himalaya, India using high-resolution remote sensing data, geospatial modeling, and ground observations over the last 5 decades (1965–2018). Environmental Monitoring and Assessment, 192(10), 635.

  • Rashid, H., & Naseem, G. (2008). Quantification of loss in spatial extent of lakes and wetlands in suburbs of Srinagar City during last century using geospatial approach. In Proceedings of Taal 2007: 12th world lake conference (pp. 653–658).

  • Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: Science and applications. CRC Press.

    Google Scholar 

  • Roy, P. S., Ramachandran, R. M., Paul, O., Thakur, P. K., Ravan, S., Behera, M. D., Sarangi, C., & Kanawade, V. P. (2022). Anthropogenic land use and land cover changes— a review on its environmental consequences and climate change. Journal of the Indian Society of Remote Sensing, 50(8), 1615–1640.

    Google Scholar 

  • Roy-Basu, A., Bharat, G. K., Chakraborty, P., & Sarkar, S. K. (2020). Adaptive co-management model for the East Kolkata wetlands: A sustainable solution to manage the rapid ecological transformation of a peri-urban landscape. Science of the Total Environment, 698, 134203.

    ADS  CAS  PubMed  Google Scholar 

  • Sahana, M., Rihan, M., Deb, S., Patel, P. P., Ahmad, W. S., & Imdad, K. (2020). Detecting the facets of anthropogenic interventions on the palaeochannels of Saraswati and Jamuna. In Anthropogeomorphology of Bhagirathi-Hooghly river system in India (pp. 469–489). CRC Press.

  • Sarkar, P., Salami, M., Githiora, Y., Vieira, R., Navarro, A., Clavijo, D., & Padgurschi, M. (2020). A conceptual model to understand the drivers of change in tropical wetlands: A comparative assessment in India and Brazil. Biota Neotropica, 20, 1–14.

    Google Scholar 

  • Seenivasan, R. (2013). National Wetland Atlas of India: A review and some inferences. Economic and Political Weekly, 48(18), 120–124.

    Google Scholar 

  • Sengupta, P., & Deb, S. R. (2022). Assessing the Impact of Urbanization on Deepor Beel: A Review. GIScience for the Sustainable Management of Water Resources, 369–383.

  • Shan, V., Singh, S. K., & Haritash, A. K. (2021). Present Status, Conservation, and Management of Wetlands in India. In Advances in Energy and Environment: Select Proceedings of TRACE 2020 (pp. 235-256). Singapore: Springer.

  • Shodimu, O. O. (2016). Spatial analysis of land cover changes in the Grand Lake Meadows, New Brunswick. Thesis, 301, 89.

    Google Scholar 

  • Silambarasan, K., & Sundaramanickam, A. (2017). Assessment of Anthropogenic Threats to the Biological Resources of Kaliveli Lake, India: A Coastal Wetland. Coastal Wetlands: Alteration and Remediation, 393–409.

  • Singh, S., Bhardwaj, A., & Verma, V. K. (2020). Remote sensing and GIS based analysis of temporal land use/land cover and water quality changes in Harike wetland ecosystem, Punjab, India. Journal of Environmental Management, 262, 110355.

    CAS  PubMed  Google Scholar 

  • Smakhtin, V., Revenga, C., & Döll, P. (2004). A pilot global assessment of environmental water requirements and scarcity. Water International, 29(3), 307–317.

    CAS  Google Scholar 

  • Smeets, E., & Weterings, R. (1999). Environmental indicators: Typology and overview.

  • Tiner, R. W. (2003). Wetlands of the United States: Current status and recent trends. US Department of the Interior, Fish and Wildlife Service.

    Google Scholar 

  • Tong, S. T., & Chen, W. (2002). Modeling the relationship between land use and surface water quality. Journal of Environmental Management, 66(4), 377–393.

    PubMed  Google Scholar 

  • Van Lavieren, H., Spalding, M., Alongi, D. M., Kainuma, M., Clüsener-Godt, M., & Adeel, Z. (2012). Securing the future of mangroves. United Nations University, Institute for Water, Environment and Health.

    Google Scholar 

  • Verhoeven, J. T., Arheimer, B., Yin, C., & Hefting, M. M. (2006). Regional and global concerns over wetlands and water quality. Trends in Ecology & Evolution, 21(2), 96–103.

    Google Scholar 

  • Vitousek, P. M. (1994). Beyond global warming: Ecology and global change. Ecology, 75(7), 1861–1876.

    Google Scholar 

  • Wetlands (Conservation and Management) Rules. (2010). Ministry of Environment and Forests, Government of India, New Delhi. https://thc.nic.in/Central%20Governmental%20Rules/Wetlands%20(Conservation%20And%20Management)%20Rules,%202010.pdf. Accessed 1 Dec 2023.

  • Wetlands (Conservation and Management) Rules. (2017). Ministry of Environment and Forests, Government of India, New Delhi. https://leap.unep.org/en/countries/in/national-legislation/wetlands-conservation-and-management-rules-2017. Accessed 1 Dec 2023.

  • Wetlands International South Asia Annual Report 2014-15. https://south-asia.wetlands.org/wp-content/uploads/sites/8/dlm_uploads/2017/11/WISA-Annual-Report-2014-15.pdf. Accessed November 28, 2022.

  • Wilson, C., & Weng, Q. (2010). Assessing surface water quality and its relation with urban land cover changes in the Lake Calumet Area, Greater Chicago. Environmental Management, 45(5), 1096–1111.

    ADS  PubMed  Google Scholar 

  • Zacharias, I., Parasidoy, A., Bergmeier, E., Kehayias, G., Dimitriou, E., & Dimopoulos, P. (2008). A DPSIR Model for Mediterranean Temporary Ponds: European, National and Local Scale comparisons. Annals of Limnology, International Journal of Limnology, 44(4), 253–266.

    Google Scholar 

  • Zhao, S., Peng, C., Jiang, H., Tian, D., Lei, X., & Zhou, X. (2006). Land use change in Asia and the ecological consequences. Ecological Research, 21, 890–896.

    Google Scholar 

  • Zockler, C., Rees, E. C., Cao, L., & Lappo, E. G. (2010). Impacts of wetland loss and degradation on waterbird populations and ecosystems. In Waterbirds around the world (pp. 40–55).

  • Zubair, A. O. (2006). Change detection in land use and Land cover using remote sensing data and GIS (A case study of Ilorin and its environs in Kwara State) (p. 176). Department of Geography, University of Ibadan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleha Jamal.

Ethics declarations

Conflict of interest

All the authors declare that the Authors have no conflict of interest for their entitled research paper “Tracing the Roots of Wetland Degradation in India: A Systematic Review of Anthropogenic Drivers, Ecological Consequences and Conservation Strategies”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Ahmad, W.S., Ahmad, S.N. et al. Tracing the roots of wetland degradation in India: a systematic review of anthropogenic drivers, ecological consequences and conservation strategies. GeoJournal 89, 24 (2024). https://doi.org/10.1007/s10708-024-10997-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10708-024-10997-9

Keywords

Navigation