Skip to main content

Advertisement

Log in

Simulating future intra-urban land use patterns of a developing city: a case study of Jashore, Bangladesh

  • Published:
GeoJournal Aims and scope Submit manuscript

A Correction to this article was published on 01 July 2022

This article has been updated

Abstract

Increasing urban growth at an unprecedented rate entails adverse implications for societal, economic, and environmental sustainability. In the cities of Bangladesh, the land covers are experiencing rapid construction-associated land expansion, population growth, and socioeconomic development. Comprehensive assessment and understanding of the prospects for rapid land use/land cover (LULC) changes are essential for managing land surface resources and ensuring sustainable development. Therefore, this study aims to assess the historical land use/land cover (LULC) changes and simulate future potential intra-urban LULC growth patterns of Jashore City up to 2050. We used (i) Landsat images to analyze LULC change using maximum likelihood supervised image classification method; (ii) Markov-CA model to illustrate the LULC transition matrix during 2000–2020, (iii) Multilayer Perception Neural Network Markov Chain (MPNNMC) Model to simulate future LULC patterns. The result shows that built-up area expanded quickly, while cropland and water areas have had a large loss of coverage. The LULC change analysis derived from prior LULC was utilized for future simulations, where natural and anthropogenic factors were chosen as the driving variables in the MPNNMC model. The future LULC modeling shows that compared to 2020, the urban area is expected to increase by 23.64%, whereas cropland, vegetation, unused land, and water areas are expected to reduce by 1.16%, 5.47%, 9.55%, and 7.73% respectively, by 2050. The change analysis shows that urban areas will increase the fastest during 2020–2030. The findings demonstrate that the rapid and unplanned urbanization and the rise of the population due to migration resulted in the fastest LULC transformation. The study findings contribute to the long-term ecological development of Jashore City and potentially enhance environmental decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Data will be available.

Change history

References

  • Aburasa, M. M., Ho, Y., Ramli, M. F., & Ash’aari, Z. H. (2016). The simulation and prediction of spatio-temporal urban growthtrends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation, 52, 380–389. https://doi.org/10.1016/j.jag.2016.07.007

    Article  Google Scholar 

  • Ahmed, S., & Bramley, G. (2015). How will Dhaka grow spatially in future? -Modelling its urban growth with a near-future planning scenario perspective. International Journal of Sustainable Built Environment, 4(2), 359–377. https://doi.org/10.1016/j.ijsbe.2015.07.003

    Article  Google Scholar 

  • Ahrend, R., Farchy, E., Kaplanis, I., & Lembcke, A. (2014). WHAT MAKES CITIES MORE PRODUCTIVE? EVIDENCE FROM FIVE OECD COUNTRIES ON THE ROLE OF URBAN GOVERNANCE. Journal of Regional Science, 57(3), 1–33. https://doi.org/10.1111/jors.12334

    Article  Google Scholar 

  • Aithal, B., Vinay, S., & Ramachandra, T. (2018). Simulating urban growth by two state modelling and connected network. Modeling Earth Systems and Environment, 4, 1297–1308. https://doi.org/10.1007/s40808-018-0506-1

    Article  Google Scholar 

  • Al-Darwish, Y., Ayad, H., Taha, D., & Saadallah, D. (2018). Predicting the future urban growth and it’s impacts on the surrounding environment using urban simulation models: Case study of Ibb city – Yemen. Alexandria Engineering Journal, 57(4), 2887–2895. https://doi.org/10.1016/j.aej.2017.10.009

    Article  Google Scholar 

  • Al-shalabi, M., Pradhan, B., Billa, L., Mansor, S., & Althuwaynee, O. (2013). Manifestation of Remote Sensing Data in Modeling Urban Sprawl Using the SLEUTH Model and Brute Force Calibration: A Case Study of Sana’a City, Yemen. Journal of the Indian Society of Remote Sensing, 41, 405–416. https://doi.org/10.1007/s12524-012-0215-6

    Article  Google Scholar 

  • Al-sharif, A., & Pradhan, B. (2014). Monitoring and predicting land use change inTripoli Metropolitan City using an integrated Markov chain and cellularautomata models in GIS. Arabian Journal of Geosciences, 7, 4291–4301. https://doi.org/10.1007/s12517-013-1119-7

    Article  Google Scholar 

  • Amato, F., Pontrandolfi, P., and Murgante, B. (2014) Using Spatiotemporal Analysis in Urban Sprawl Assessment and Prediction. Computational Science and Its Applications – ICCSA (pp. 758–773). Springer, Cham. https://doi.org/10.1007/978-3-319-09129-7_55

  • Araya, Y. H., & Cabral, P. (2010). Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra. Portugal. Remote Sensing, 2(6), 1549–1563. https://doi.org/10.3390/rs2061549

    Article  Google Scholar 

  • Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275. https://doi.org/10.1016/j.jag.2011.12.014

    Article  Google Scholar 

  • Basu, T., Das, A., Pham, Q. B., et al. (2021). Development of an integrated peri-urban wetland degradation assessment approach for the Chatra Wetland in eastern India. Science and Reports, 11, 4470. https://doi.org/10.1038/s41598-021-83512-6

    Article  Google Scholar 

  • BBS. (2013). Dsitrict Statistics 2011: Jessore. Ministry of Planning, Government of the People's Republic of Bangladesh, Statistics and Informatics Division. Dhaka: Bangladesh Bureau of Statistics (BBS).

  • Bihamta, N., Soffianian, A., Fakheran, S., & Gholamalifard, M. (2015). Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran. Journal of the Indian Society of Remote Sensing, 43, 407–414. https://doi.org/10.1007/s12524-014-0402-8

    Article  Google Scholar 

  • Boadi, K., Kuitunen, M., Raheem, K., & Hanninen, K. (2005). Urbanisation without development: Environmental and health implications in African Cities. Environment, Development and Sustainability, 7, 465–500. https://doi.org/10.1007/s10668-004-5410-3

    Article  Google Scholar 

  • Chen, M., Zhang, H., Liu, W., & Zhang, W. (2014a). The global pattern of urbanization and economic growth: Evidence from the last three decades. PLoS ONE, 9(8), e103799. https://doi.org/10.1371/journal.pone.0103799

    Article  Google Scholar 

  • Chen, S., Chen, B., & Fath, B. (2014b). Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation. Environmental Pollution, 190, 139–149. https://doi.org/10.1016/j.envpol.2014.03.032

    Article  Google Scholar 

  • Clarke, K., & Hoppen, S. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B, 24, 247–261.

    Article  Google Scholar 

  • Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29, 390–401. https://doi.org/10.1016/j.apgeog.2008.12.005

    Article  Google Scholar 

  • Dey, NN., Rakib, A.A.; Kafy, A.A.; Raikwar, V. Geospatial modelling of changes in land use/land cover dynamics using Multi-layer perception Markov chain model in Rajshahi City, Bangladesh. Environmental Challenges. 4(100148). https://doi.org/10.1016/j.envc.2021.100148

  • DPHE, (Department of Public Health Engineering), Jessore, Ground Water Level Status of Jessore, 1981–2010, Personal Communication, 2012

  • Faisal, A. A., Haque, S., & Rahman, M. M. (2021). Retrieving spatial variation of aerosol level over urban mixed land surfaces using Landsat imageries: Degree of air pollution in Dhaka Metropolitan Area. Physics and Chemistry of the Earth, Parts a/b/c. https://doi.org/10.1016/j.pce.2021.103074

    Article  Google Scholar 

  • Fattah, M., Morshed, S. R., & Morshed, S. Y. (2021a). Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature. SN Applied Science, 3, 359. https://doi.org/10.1007/s42452-021-04351-8

    Article  Google Scholar 

  • Fattah, M., Morshed, S. R., & Morshed, S. Y. (2021b). Impacts of land use-based carbon emission pattern on surface temperature dynamics: Experience from the urban and suburban areas of Khulna, Bangladesh. Remote Sensing Applications: Society and Environment., 22, 100508. https://doi.org/10.1016/j.rsase.2021.100508

    Article  Google Scholar 

  • Feng, Y., Cai, Z., Tong, X., Wang, J., Gao, C., Chen, S., & Lei, Z. (2018). Urban Growth Modeling and Future Scenario Projection Using Cellular Automata (CA) Models and the R Package Optimx. ISPRS International Journal of Geo-Information, 7(10), 387. https://doi.org/10.3390/ijgi7100387

    Article  Google Scholar 

  • Gazi, M., Rahman, M., Uddin, M., & Rahman, F. (2020). Spatio-temporal dynamic land cover changes and their impacts on the urban thermal environment in the Chittagong metropolitan area, Bangladesh. Geojournal. https://doi.org/10.1007/s10708-020-10178-4

    Article  Google Scholar 

  • General Economics Division (GED). (2020). Making Vision 2041 a Reality: Perspective Plaon of Bangladesh 2021–2041. Ministry of Planning, Government of the People’s Republic of Bangladesh.

    Google Scholar 

  • Gómez, J., Patiño, J., Duque, J., & Passos, S. (2020). Spatiotemporal modeling of urban growth using machine learning. Remote Sensing, 12(1), 109. https://doi.org/10.3390/rs12010109

    Article  Google Scholar 

  • Gong, H., Simwanda, M., & Murayama, Y. (2017). An Internet-Based GIS Platform Providing Data for Visualization and Spatial Analysis of Urbanization in Major Asian and African Cities. ISPRS Int. J. Geo-Inf., 6, 257.

    Article  Google Scholar 

  • Grant, U. (2010) Spatial inequality and urban poverty traps. London, UK: Overseas Development Institute. Retrieved from https://www.odi.org/publications/4526-spatial-inequality-andurban-poverty-traps

  • Grekousis, G., Manetos, P., & Photis, Y. (2013). Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the Athens metropolitan area. Cities, 30, 193–203. https://doi.org/10.1016/j.cities.2012.03.006

    Article  Google Scholar 

  • Han, H., Yang, C., & Song, J. (2015). Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability, 7(4), 4260–4279. https://doi.org/10.3390/su7044260

    Article  Google Scholar 

  • Hasan, M., Hossain, M., Bari, M., Islam, M. (2013). Agricultural Land Availability in Bangladesh; SRDI, Ministry of Agriculture: Dhaka, Bangladesh (p. 42). ISBN 978-984-33-6141-7.

  • Hassan, M., & Nazem, M. N. (2016). Examination of land use/land cover changes, urban growth dynamics, and environmental sustainability in Chittagong city, Bangladesh. Environment, Development and Sustainability, 18, 697–716. https://doi.org/10.1007/s10668-015-9672-8

    Article  Google Scholar 

  • Hassan, M. M., & Southworth, J. (2017). Analyzing land cover change and urban growth trajectories of the mega-urban region of Dhaka using remotely sensed data and an ensemble classifier. Sustainability, 10(10), 1–24. https://doi.org/10.3390/su10010010

    Article  Google Scholar 

  • Hassan, et al. (2016). Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. Springer plus, 5, 1–11. https://doi.org/10.1186/s40064-016-2414-z

    Article  Google Scholar 

  • He, C., Okada, N., Zhang, Q., Shi, P., & Li, J. (2008). Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landscape and Urban Planning, 86(12), 79–91. https://doi.org/10.1016/j.landurbplan.2007.12.010

    Article  Google Scholar 

  • He, Q., He, W., Song, Y., Wu, J., Yin, C., & Mou, Y. (2018). The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data.’ Land Use Policy, 78, 726–738. https://doi.org/10.1016/j.landusepol.2018.07.020

    Article  Google Scholar 

  • Herold, M., Goldstein, N., & Clarke, K. (2003). The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment, 86(3), 286–302. https://doi.org/10.1016/S0034-4257(03)00075-0

    Article  Google Scholar 

  • Hoque, M. Z., Cui, S., Islam, I., Xu, L., & Tang, J. (2020). Future impact of land use/land cover changes on ecosystem services in the lower Meghna River Estuary, Bandladesh. Sustainability, 12, 2112. https://doi.org/10.3390/su12052112

    Article  Google Scholar 

  • Hossain, M. (2015). Declining productivity of agricultural land in Bangladesh. J Agroecol Nat Resour Manag, 2, 25–30.

    Google Scholar 

  • Hossain, M., Lin, C. K., & Hussain, M. Z. (2001). Goodbye Chakaria Sunderban: The oldest mangrove forest. The Society of Wetland Scientists Bulletin, 18, 19–22. https://doi.org/10.1672/0732-9393(2001)018[0019:GCSTOM]2.0.CO;2

    Article  Google Scholar 

  • Hu, Y., Batunacun, Zhen, L., & Zhuang, D. (2019). Assessment of Land-Use and Land-Cover Change in Guangxi, China. Scientific Reports, 9, 2189. https://doi.org/10.1038/s41598-019-38487-w

  • Hyandye, C., Mandara, C. G., & Safari, J. (2015). GIS and logit regression model applications in land use/land cover change and distribution in Usangu Catchment. American Journal of Remote Sensing, 3(1), 6–16. https://doi.org/10.11648/j.ajrs.20150301.12

    Article  Google Scholar 

  • Islam, M. R., Miah, M. G., & Inoue, Y. (2016). Analysis of land use and land cover changes in the coastal area of Bangladesh using Landsat imagery. Land Degradation and Development, 27, 899–909. https://doi.org/10.1002/ldr.2339

    Article  Google Scholar 

  • Islam, M. S., & Ahmed, R. (2012). Land use change prediction in Dhaka City using Gis aided Markov chain modeling. Journal of Life and Earth Science, 6, 81–89. https://doi.org/10.3329/jles.v6i0.9726

    Article  Google Scholar 

  • Islam, G. M., Islam, A. K., Shopan, A. A., Rahman, M. M., Lazar, A. N., & Mukhopadhyay, A. (2015). Implications of agricultural land use change to ecosystem services in the Ganges delta. J. Environ. Manag., 161, 443–452.

    Article  Google Scholar 

  • Jansse, L., & van der Wel, F. (1994). Accuracy assessment of satellite derived land-cover data: A review. Photogrammetric Engineering and Remote Sensing, 60(4), 419–426.

    Google Scholar 

  • Janssen, L. L., & Wel, F. J. (1994). Accuracy assessment of satellite derived Land-Gover data: A review. Photogrammetric Engineering and Remote Sensing, 60(4), 419–426.

    Google Scholar 

  • Kafy, A.-A., Faisal, A.-A., Hasan, M. M., Abdullah-Al- Faisal, Islam, M., & Rahman, M. S. (2020) Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment, 18(2).

  • Kafy, A.-A., Faisal, A.-A., Rahman, M., Islam, M., Rakib, A., Islam, M., & Sattar, G. S. (2021a). Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, 64, 102542. https://doi.org/10.1016/j.scs.2020.102542

    Article  Google Scholar 

  • Kafy, A.-A., Faisal, A.-A., Shuvo, R. M., Naim, M. N., Sikdar, M. S., Chowdhury, R., & Kona, M. (2021b). Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. Remote Sensing Applications: Society and Environment, 21, 100463. https://doi.org/10.1016/j.rsase.2020.100463

    Article  Google Scholar 

  • Kafy, A. A., Rakib, A. A., Akter, K. S., et al. (2021). Monitoring the effects of vegetation cover losses on land surface temperature dynamics using geospatial approach in Rajshahi City, Bangladesh. Environmental Challenges. https://doi.org/10.1016/j.envc.2021c.100187

    Article  Google Scholar 

  • Khan, M. M. H., Bryceson, I., Kolivras, K. N., Faruque, F., Rahman, M. M., & Haque, U. (2015). Natural disasters and land-use/land-cover change in the southwest coastal areas of Bangladesh. Regional Environmental Change, 15, 241–250.

    Article  Google Scholar 

  • Khanal, N., Uddin, K., Matin, M., & Tenneson, K. (2019). Automatic detection of spatiotemporal urban expansion patterns by fusing OSM and landsat data in Kathmandu. Remote Sensing, 11(19), 2296. https://doi.org/10.3390/rs11192296

    Article  Google Scholar 

  • Kong, F., Yin, H., Nakagoshi, N., & James, P. (2012). Simulating urban growth processes incorporating a potential model with spatial metrics. Ecological Indicators, 20, 82–91. https://doi.org/10.1016/j.ecolind.2012.02.003

    Article  Google Scholar 

  • Kumar, K. S., Bhaskar, P. U., & Padmakumari, K. (2015). Application of land change modeler for prediction of future land use land cover: A case study of Vijayawada city. International Journal of Advanced Engineering Science and Technological Research, 3(01), 773–783.

    Google Scholar 

  • Li, H., Xiao, P., Feng, X., Yang, Y., Wang, L., Zhang, W., & Wang, X. (2017). Using Land Long-Term Data Records to Map Land Cover Changes in China Over 1981–2010. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(4), 1372–1389. https://doi.org/10.1109/JSTARS.2016.2645203

    Article  Google Scholar 

  • Li, Y., & Liu, G. (2017). Characterizing spatiotemporal pattern of land use change and its driving force based on GIS and landscape analysis techniques in Tianjin during 2000–2015. Sustainability, 9(6), 894. https://doi.org/10.3390/su9060894

    Article  Google Scholar 

  • Maarseveen, M., Martinez, J., & Flacke, J. (2018) GIS in sustainable urban planning and management: A global perspective (1st Edn). CRC Press. https://doi.org/10.1201/9781315146638

  • Maduako, I., Yun, Z., & Patrick, B. (2016). Simulation and prediction of land surface temperature (LST) dynamics within Ikom City in Nigeria using artificial neural network (ANN). Journal of Remote Sensing and GIS, 5(1), 158–165. https://doi.org/10.4172/2469-4134.1000158

    Article  Google Scholar 

  • Mannan, A., Liu, J., Zhongke, F., Khan, T., Saeed, S., Mukete, B., & Shah, S. (2019). Application of land-use/land cover changes in monitoring and projecting forest biomass carbon loss in Pakistan. Global Ecology and Conservation, 17, 535. https://doi.org/10.1016/j.gecco.2019.e00535

    Article  Google Scholar 

  • Mansour, S., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy, 91, 104414. https://doi.org/10.1016/j.landusepol.2019.104414

    Article  Google Scholar 

  • Meng, B., Ge, J., Liang, T., Yang, S., Gao, J., Feng, Q., Cui, X., Huang, X., & Xie, H. (2017). Evaluation of remote sensing inversion error for the above-ground biomass of Alpine Meadow grassland based on multi-source satellite data. Remote Sens, 9(4), 372.

    Article  Google Scholar 

  • Mishra, V.N.; Rai, P.K. (2016) A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab. J. Geosci. 9.

  • Mohammad, M., Sahebgharani, A., & Makeipour, E. (2013). Urban growth simulationthrough cellular automata (CA), anaiytic hierarchy process (AHP) and GIS, case study of 8th and 12th municipal districts of Isfahan. Geographia Technica, 8(2), 57–70.

    Google Scholar 

  • Mondal, M. S. and Hossain, M. M. A. 2009. Characterizing Long-term Changes of Bangladesh Climate in Context of Agriculture and Irrigation. Bureau of Research, Testing and Consultation of Bangladesh University of Engineering & Technology, Climate Change Cell, DoE, MoEF; Component 4b, CDMP, MoFDM. June 2009, Dhaka

  • Mondal, K. K., Akhter, M. A., Mallik, M., & Hassan, S. (2017) Study on Rainfall and Temperature Trend of Khulna Division in Bangladesh. DEW-DROP, 4.

  • Morshed, S. R., Fattah, M. A., Rimi, A. A., & Haque, M. N. (2020). Surface temperature dynamics in response to land cover tranformation. Journal of Civil Engineering, Science and Technology, 11(2), 94–110.

    Article  Google Scholar 

  • Morshed, S. R., & Fattah, M. A. (2021). Responses of spatiotemporal vegetative land cover to meteorological changes in Bangladesh. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2021.100658

    Article  Google Scholar 

  • Morshed, S. R., Fattah, M. A., Haque, M. N., & Morshed, S. Y. (2021). Future ecosystem service value modeling with land cover dynamics by using machine learning based Artificial Neural Network model for Jashore city, Bangladesh. Physics and Chemistry of the Earth, Parts a/b/c. https://doi.org/10.1016/j.pce.2021.103021

    Article  Google Scholar 

  • Moore, M., Gould, P., & Keary, B. (2003). Global urbanization and impact on health. International Journal of Hygiene and Environmental Health, 206(4–5), 269–278. https://doi.org/10.1078/1438-4639-00223

    Article  Google Scholar 

  • Nagendra, H., Munroe, D., & Southworth, J. (2004). From pattern to process: Landscape fragmentation and the analysis of land use/land cover change. Agriculture, Ecosystems & Environment, 101(2–3), 111–115. https://doi.org/10.1016/j.agee.2003.09.003

    Article  Google Scholar 

  • Nath, B., Niu, Z., & Singh, R. (2018). Land use and land cover changes, and environment and risk evaluation of Dujiangyan City (SW China) using remote sensing and GIS techniques. Sustainability, 10(12), 4631. https://doi.org/10.3390/su10124631

    Article  Google Scholar 

  • Nurwanda, A., Zain, A., & Rustiadi, E. (2015). Analysis of land cover changes and landscape fragmentation in Batanghari Regency, Jambi Province. International Conference, Intelligent Planning Towards Smart Cities, CITIES 2015. Surabaya, Indonesia: In Proceedings of the Social and Behavioral Sciences, CITIES 2015.

  • Oliva, F. E., Dalmau, O. S., and Alarcón, T. E. (2014) A Supervised Segmentation Algorithm for Crop Classification Based on Histograms Using Satellite Images. Mexican International Conference on Artificial Intelligence. 8856, pp. 327–335. Mexico: Springer, Cham. https://doi.org/10.1007/978-3-319-13647-9_30

  • Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99(2), 104–114. https://doi.org/10.1016/j.landurbplan.2010.09.001

    Article  Google Scholar 

  • Pijanowski, B., Tayyebi, A., Doucette, J., Pekin, B., Braun, D., & Plourde, J. (2014). A big data urban growth simulation at a national scale: Configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment. Environmental Modelling & Software, 51, 250–268. https://doi.org/10.1016/j.envsoft.2013.09.015

    Article  Google Scholar 

  • Pramanik, M., & Stathakis, D. (2015). Forecasting urban sprawl in Dhaka city of Bangladesh. Environment and Planning b: Urban Analytics and City Science, 43(4), 756–771. https://doi.org/10.1177/0265813515595406

    Article  Google Scholar 

  • Ranagalage, M., Wang, R., Gunarathna, M. H. J. P., Dissanayake, D., Murayama, Y., & Simwanda, M. (2019). Spatial forecasting of the landscape in rapidly urbanizing hill stations of South Asia: A case study. Remote Sensor, 11, 1743.

    Article  Google Scholar 

  • Reddy, C. S., Pasha, S. V., Jha, C. S., Diwakar, P. G., & Dadhwal, V. K. (2016). Development of national database on long-term deforestation (1930–2014) in Bangladesh. Global Planet Change, 139, 173–182. https://doi.org/10.1016/j.gloplacha.2016.02.003

    Article  Google Scholar 

  • Rimal, B., Zhang, L., Keshtkar, H., Haack, B., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov chain. ISPRS Int. J. Geo-Inf, 7(4), 154. https://doi.org/10.3390/ijgi7040154

    Article  Google Scholar 

  • Salam, R., Islam, A. T., Shill, B., Alam, G., Hasanuzzaman, M., Hasan, M., & Shouse, R. (2021). Nexus between vulnerability and adaptive capacity of drought-prone rural households in northern Bangladesh. Natural Hazards. https://doi.org/10.1007/s11069-020-04473-z

    Article  Google Scholar 

  • Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Mathematical and Computer Modelling, 54, 938–943. https://doi.org/10.1016/j.mcm.2010.11.019

    Article  Google Scholar 

  • Santé, I., García, A., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122. https://doi.org/10.1016/j.landurbplan.2010.03.001

    Article  Google Scholar 

  • Saputra, M. H., & Lee, H. S. (2019). Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton. Sustainability, 11(11), 3024. https://doi.org/10.3390/su11113024

    Article  Google Scholar 

  • Simwanda, M., Murayama, Y., Phiri, D., Nyirenda, V. R., & Ranagalage, M. (2021). Simulating Scenarios of Future Intra-Urban Land-Use Expansion Based on the Neural Network–Markov Model: A Case Study of Lusaka. Zambia. Remote Sens., 13, 942. https://doi.org/10.3390/rs13050942

    Article  Google Scholar 

  • Shahi, E., Karimi, S., & Jafari, H. R. (2020). Monitoring and modeling land use/cover changes in Arasbaran protected Area using and integrated Markov chain and artificial neural network. Model. Earth Syst. Environ., 6, 1901–1911.

    Article  Google Scholar 

  • Shamshirband, S., Hashemi, S., Salimi, H., & Samadianfard, S. (2020). Predicting Standardized Streamflow index for hydrological drought using machine learning models. Engineering Applications of Computational Fluid Mechanics, 14(1), 339–350. https://doi.org/10.1080/19942060.2020.1715844

    Article  Google Scholar 

  • Shatnawi, N., & Qdais, H. A. (2019). Mapping urban land surface temperature using remote sensing techniques and artificial neural network modelling. International Journal of Remote Sensing, 40(10), 3968–3983. https://doi.org/10.1080/01431161.2018.1557792

    Article  Google Scholar 

  • Shubho, M., & Islam, I. (2020). An integrated approach to modeling urban growth using modified built-up area extraction technique. International Journal of Environmental Science and Technology, 17, 2793–2810. https://doi.org/10.1007/s13762-020-02623-1

    Article  Google Scholar 

  • Somvanshi, S. S., Bhalla, O., Kunwar, P., et al. (2020). Monitoring spatial LULC changes and its growth prediction based on statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh. India. Environ Dev Sustain, 22, 1073–1091. https://doi.org/10.1007/s10668-018-0234-8

    Article  Google Scholar 

  • Subedi, P., Subedi, K., & Thapa, B. (2013). Application of a Hybrid Cellular Automaton – Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin. Florida. Applied Ecology and Environmental Sciences, 1(6), 126–132.

    Article  Google Scholar 

  • Talukdar, S., Ghose, B., Shahfahad, Salam, R., Mahato, S., Pham, Q., Avand, M. (2020) Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stochastic Environmental Research and Risk Assessment, 34, 2277–2300. https://doi.org/10.1007/s00477-020-01862-5

  • Tendaupenyu, P., Magadza, C. H., & Murwira, A. (2016). Changes in landuse/landcover patterns and human population growth in the Lake Chivero catchment. Zimbabwe. Geocarto Internationa, 32(7), 797–811. https://doi.org/10.1080/10106049.2016.1178815

    Article  Google Scholar 

  • Tewolde, M. G., & Cabral, P. (2011). Urban Sprawl analysis and modeling in Asmara, Eritrea. Remote Sensor, 3, 2148–2165.

    Article  Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2012). Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landscape and Urban Planning, 105, 140–148.

    Article  Google Scholar 

  • Ullah, S., Tahir, A., Akbar, T., Hassan, Q., Dewan, A., Khan, A., & Khan, M. (2019). Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan Region. Sustainability, 11(19), 5492.

    Article  Google Scholar 

  • Verburg, P., Overmars, K., Huigen, M., de Groot, W., & Veldkamp, A. (2006). Analysis of the Effects of Land Use Change on Protected Areas in the Philippines., 26(2), 153–173. https://doi.org/10.1016/j.apgeog.2005.11.005

    Article  Google Scholar 

  • Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117, 34–49. https://doi.org/10.1016/j.rse.2011.02.030

    Article  Google Scholar 

  • World Bank. (2017). Cities, slums, and early child growth: Empirical evidence from Bangladesh. World Bank Group.

    Google Scholar 

  • Wu, J., Li, R., Ding, R., Li, T., & Sun, H. (2017). City expansion model based on population diffusion and road growth. Applied Mathematical Modelling, 43, 1–14. https://doi.org/10.1016/j.apm.2016.08.002

    Article  Google Scholar 

  • Yadav, K., & Congalton, R. (2019). Correction: Yadav. K. and Congalton. R. Accuracy Assessment of Global Food Security-Support Analysis Data (GFSAD) Cropland Extent Maps Produced at Three Different Spatial Resolutions. Remote Sensing, 11(6), 630. https://doi.org/10.3390/rs11060630

    Article  Google Scholar 

  • Yadav, K., and Congalton, R. G. (2019) Correction: Yadav. K. and Congalton. R. Accuracy Assessment of Global Food Security-Support Analysis Data (GFSAD) Cropland Extent Maps Produced at Three Different Spatial Resolutions. Remote Sens. (2018). 10, 1800. Remote Sensing, 11(6), 630. https://doi.org/10.3390/rs11060630

    Article  Google Scholar 

  • Ying, C., Ling, H., & Kai, H. (2017). Change and Optimization of Landscape Patterns in a Basin Based on Remote Sensing Images: A Case Study in China. Polish Journal of Environmental Studies, 26(5), 2343–2353. https://doi.org/10.15244/pjoes/70007

    Article  Google Scholar 

  • Zhang, D., Liu, X., Wu, X., Yao, Y., Wu, X., & Chen, Y. (2018). Multiple intra-urban land use simulations and driving factors analysis: A case study in Huicheng, China. Gisci. Remote Sensor, 56, 282–308.

    Article  Google Scholar 

  • Zhang, F., Yushanjiang, A., & Jing, Y. (2019). Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Science of the Total Environment, 656, 1133–1144. https://doi.org/10.1016/j.scitotenv.2018.11.444

    Article  Google Scholar 

  • Zheng, H. W., Shen, G. Q., Wang, H., & Hong, J. (2015). Simulating land use change in urban renewal areas: A case study in Hong Kong. Habitat International, 46, 3–34. https://doi.org/10.1016/j.habitatint.2014.10.008

    Article  Google Scholar 

  • Zhou, Y., Varquez, A., & Kanda, M. (2019). High-resolution global urban growth projection based on multiple applications of the SLEUTH urban growth model. Scientific Data, 6, 34. https://doi.org/10.1038/s41597-019-0048-z

    Article  Google Scholar 

Download references

Funding

There was no funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abdul Fattah.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliation of Md. Razzakul Islam and Md. Nazmul Haque is updated. The corresponding author Md. Abdul Fattah e-mail address is also updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morshed, S.R., Fattah, M.A., Hoque, M.M. et al. Simulating future intra-urban land use patterns of a developing city: a case study of Jashore, Bangladesh. GeoJournal 88, 425–448 (2023). https://doi.org/10.1007/s10708-022-10609-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-022-10609-4

Keywords

Navigation