Skip to main content

Advertisement

Log in

Monitoring land use changes and its future prospects using cellular automata simulation and artificial neural network for Ahmedabad city, India

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

The urban sprawl is one of the potential threat for sustainable development. The present study has been carried out on Ahmedabad Municipal Corporation (AMC) area including Ahmedabad city to monitor the urban sprawl from 1976 to 2017. Normalized Difference Vegetation Index, Normalized Difference Built-Up Index, and Built-Up Index are applied to monitor the urban land use change by using multi-temporal and multi-date remote sensing satellite data from Landsat. The future scenario of urban land use prediction of AMC has been modelled by the use of cellular automata (CA) and artificial neural network (ANN) with GIS techniques. The results of land use monitoring indicate that the built-up area has increased by 156.93 km2 whereas, agricultural land, open spaces, urban vegetation, and water bodies have decreased during the last 4-decades from 1976 to 2017. Moreover, the results of CA simulation reveals that the built-up will continue to increase in the future at the cost of other classes. The decadal built-up growth was 2.58 km2 during the earlier period and it was the highest (5.98 km2) during the decade of 2007–2017. The validation of results related to CA–ANN has been measured by the Kappa coefficient in which the obtained values of Kappa local, Kappa histogram and Kappa overall were 0.92, 0.75, and 0.69 respectively and the measured percentage of correctness was 78.63%. The predicted urban land use growth reveals that the built-up would cover the maximum part of the AMC area by 2027 provided that the present land use trend, demographic growth, and commercial development does not show any major change. Therefore, the study pertaining to LULC change and its future prediction will be highly helpful for urban planners and administrators to prepare a sustainable city planning for the Ahmedabad city and its surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Census of India (2011)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abuelaish, B., & Olmedo, M. T. C. (2016). Scenario of land use and land cover change in the Gaza Strip using remote sensing and GIS models. Arabian Journal of Geosciences, 9(4), 274.

    Google Scholar 

  • Adhvaryu, B. (2010). Enhancing urban planning using simplified models: SIMPLAN for Ahmedabad, India. Progress in Planning, 73(3), 113–207. https://doi.org/10.1016/j.progress.2009.11.001.

    Article  Google Scholar 

  • Adhvaryu, B. (2011). Analysing evolution of urban spatial structure: A case study of Ahmedabad, India. Environment and Planning B: Planning and Design, 38(5), 850–863.

    Google Scholar 

  • Adhvaryu, B., & Echenique, M. (2012). SIMPLAN: A SIMplified PLANning Model. Environment and Planning B: Planning and Design, 39(1), 96–119.

    Google Scholar 

  • Ahmed, B., & Ahmed, R. (2012). Modeling Urban land cover growth dynamics using multitemporal satellite images: A case study of Dhaka, Bangladesh. ISPRS International Journal of Geo-Information, 1(1), 3–31.

    Google Scholar 

  • Al-Rubkhi, A. N. M., Talal, A. A., & Mohammed, A. B. (2017). Land use change analysis and modelling using open source (QGIS) case study: Boasher Willayat. Muscat: College of Arts and Social Science, Department of Geography, Sultan Qaboos University.

    Google Scholar 

  • Araya, Y. H., & Cabral, P. (2010). Analysis and modeling of urban land cover change in Setúbal and Sesimbra Portugal. Remote Sensing, 2(6), 1549–1563.

    Google Scholar 

  • Arsanjani, J. J. (2018). Characterizing, monitoring, and simulating land cover dynamics using GlobeLand30: A case study from 2000 to 2030. Journal of Environmental Management, 214, 66–75.

    Google Scholar 

  • Badlani, B., Patel, A. N., Patel, K., & Kalubarme, M. H. (2017). Urban growth monitoring using remote sensing and geo-informatics: Case study of Gandhinagar, Gujarat state (India). International Journal of Geosciences, 8(04), 563–576.

    Google Scholar 

  • Beaumont, L. J., & Duursma, D. (2012). Global projections of 21st century land-use changes in regions adjacent to protected areas. PLoS ONE, 7(8), 1–8.

    Google Scholar 

  • Brown, D., Band, L. E., Green, K. O., Irwin, E. G., Jain, A., Lambin, E. F., et al. (2013). Advancing land change modelling: opportunities and research requirements. Washington, DC: The National Research Council Press. ISBN: 9780309288330.

  • Census. (2011). Primary census abstracts, Registrar General of India, Ministry of Home Affairs, Government of India. Available at: http://www.censusindia.gov.in/2011census/PCA/pca_highlights/pe_data.html. Accessed 17 May 2019.

  • Dahdouh-guebas, F. (2002). The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystem. Environment, Development and Sustainability, 4(2), 93–112.

    Google Scholar 

  • Daye, D. D., & Healey, J. R. (2015). Impacts of land-use change on sacred forests at the landscape scale. Global Ecology and Conservation, 3, 349–358.

    Google Scholar 

  • Duranton, G. (2009). Are cities engines of growth and prosperity for developing countries? In M. Spence, P. C. Annez, & R. M. Buckley (Eds.), Urbanization and growth. Washington DC: World Bank, Commission on Growth and Development.

    Google Scholar 

  • Dutta, B. (2019). Gujarat: The land of accelerating growth. Retrieved from ElectronicsB2B.com, published on January 7, 2019, Retrieved 6 January, 2020, from https://www.electronicsb2b.com/policy-corner/gujarat-the-land-of-accelerating-growth/.

  • Gao, P., Niu, X., Wang, B., & Zheng, Y. (2015). Land use changes and its driving forces in hilly ecological restoration area based on GIS and RS of northern china. Scientific Reports, 5(October 2014), 1–11.

    Google Scholar 

  • Garg, A., Avashia, V., & Parihar, S. (2018). Land use change trends of Indian cities: A bird's eye view: Vulnerabilities of unplanned urban growth. New Delhi: Sage.

    Google Scholar 

  • Gašparović, M., & Jogun, T. (2018). The effect of fusing Sentinel-2 bands on land-cover classification. International Journal of Remote Sensing, 39(3), 822–841.

    Google Scholar 

  • GIS-Lab. (2018). Landscape change analysis with MOLUSCE—methods and algorithms. https://wiki.gislab.info/w/Landscape_change_analysis_with_MOLUSCE__methods_and_algorithms. Accessed 29 Jan 2018.

  • Goldewijk, K. K. (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15(2), 417.

    Google Scholar 

  • Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72.

    Google Scholar 

  • Goswami, M., & Khire, M. V. (2016). Land use and land cover change detection for urban sprawl analysis of Ahmedabad city using multi-temporal Landsat data. International Journal of Advanced Remote Sensing and GIS, 5(4), 1670–1677.

    Google Scholar 

  • Han, H., Yang, C., & Song, J. (2015). Scenario simulation and the prediction of land use and land cover change in Beijing China. Sustainability, 7(4), 4260–4279.

    Google Scholar 

  • He, C., Shi, P., Xie, D., & Zhao, Y. (2010). Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sensing Letters, 1(4), 213–221.

    Google Scholar 

  • Islam, K., Jashimuddin, M., Nath, B., & Nath, T. K. (2016). Quantitative assessment of land cover change using Landsat time series data: Case of Chunati Wildlife Sanctuary (CWS), Bangladesh. International Journal of Environment and Geoinformatics, 3(2), 45–55.

    Google Scholar 

  • Islam, K., Jashimuddin, M., Nath, B., & Nath, T. K. (2018a). Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati Wildlife Sanctuary, Bangladesh. Egyptian Journal of Remote Sensing and Space Science, 21(1), 37–47.

    Google Scholar 

  • Islam, K., Rahman, M. F., & Jashimuddin, M. (2018b). Modeling land use change using cellular automata and artificial neural network: The case of Chunati Wildlife Sanctuary, Bangladesh. Journal of Ecological Indicators, 88, 439–453.

    Google Scholar 

  • Jat, M. K., Garg, P. K., & Khare, D. (2008). Monitoring and modelling urban sprawl using remote sensing and GIS techniques. International Journal of Applied Earth Observation, 10(1), 26–43.

    Google Scholar 

  • Jiang, X., Lin, M., & Zhao, J. (2011). Woodland cover change assessment using decision trees, support vector machines and artificial neural networks classification algorithms. In Proceedings of the 4th international conference on intelligent computation technology and automation, Shenzhen, China, 28–29 (pp. 312–315).

  • Jogun, T., Lukić, A., & Gašparović, M. (2019). Simulation model of land cover changes in a post-socialist peripheral rural area: Požega-Slavonia County, Croatia. Hrvatski geografski glasnik, 81(1), 31–59.

    Google Scholar 

  • Kandlikar, M., & Ramachandran, G. (2000). The causes and consequences of particulate air pollution in urban India: A synthesis of the science. Annual Reviews of Energy and the Environment, 25(1), 629–694.

    Google Scholar 

  • Kantakumar, L. N., Kumar, S., & Schneider, K. (2016). Spatiotemporal urban expansion in Pune metropolis, India using remote sensing. Habitat International, 51, 11–22.

    Google Scholar 

  • Kotkin, J. (2010). In pictures—The Next Decade's fastest growing cities. Jersey City: Forbes.

    Google Scholar 

  • Kumar, J. A. V., Pathan, S. K., & Bhanderi, R. J. (2007). Spatio-temporal analysis for monitoring urban growth—A case study of Indore City, Photonirvachak. Journal of the Indian Society of Remote Sensing, 35(1), 11–20.

    Google Scholar 

  • Kumar, S., Bhattacharyya, J. K., Vaidya, A. N., Chakraborty, T., Devotta, S., & Akolkar, A. B. (2009). Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: An insight. Waste Management, 29(2), 883–895.

    Google Scholar 

  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Folke, C., et al. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269.

    Google Scholar 

  • Lau, K. H., & Kam, B. H. (2005). A cellular automata model for urban land-use simulation. Environment and Planning B: Planning and Design, 32(2), 247–263.

    Google Scholar 

  • Le Hégarat-Mascle, S., Ottlé, C., & Guérin, C. (2005). Land cover change detection at coarse spatial scales based on iterative estimation and previous state information. Remote Sensing of Environment, 95(4), 464–479.

    Google Scholar 

  • Liping, C., Yujun, S., & Saeed, S. (2018). Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE, 13(7), e0200493.

    Google Scholar 

  • López, E., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land-cover and land-use change in the urban fringe. Landscape and Urban Planning, 55(4), 271–285.

    Google Scholar 

  • Mahadevia, D., Desai, R., & Vyas, S. (2014). City profile: Ahmedabad. CUE working paper: 26.

  • Mallick, J., Kant, Y., & Bharath, B. D. (2008). Estimation of land surface temperature over Delhi using Landsat-7 ETM+. Journal of Indian Geophysical Union, 12(3), 131–140.

    Google Scholar 

  • Megahed, Y., Cabral, P., Silva, J., & Caetano, M. (2015). Land cover mapping analysis and urban growth modeling using remote sensing techniques in greater Cairo Region-Egypt. ISPRS International Journal of Geo-Information, 4(3), 1750–1769.

    Google Scholar 

  • Moghadam, H. S., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149.

    Google Scholar 

  • Mohan, M., Pathan, S. K., Narendrareddy, K., Kandya, A., & Pandey, S. (2011). Dynamics of urbanization and its impact on land-use/land-cover: A case study of megacity Delhi. Journal of Environmental Protection, 2(09), 1274.

    Google Scholar 

  • MOLUSCE. (2018). MOLUSCE modules for land use change evaluation—Quick help. https://github.com/nextgis/molusce/blob/master/doc/en/QuickHelp.pdf. Accessed 29 Jan 2018.

  • Nguyen, D. T., Iskandar, I., & Ho, S. (2016). Land cover change and the CO2 stock in the Alembang City, Indonesia: A study using remote sensing, GIS technique and LUMENs. Egyptian Journal of Remote Sensing and Space Sciences. https://doi.org/10.1016/j.ejrs.2016.08.004.

    Article  Google Scholar 

  • Pandya, A. R., & Joshi, M. A. (2011). A comparative study on consumers' attitude towards private labels: A focus on Gujarat. IUP Journal of Marketing Management, 10(1), 19.

    Google Scholar 

  • Patel, A., Crooks, A., & Koizumi, N. (2018). Spatial agent-based modeling to explore slum formation dynamics in Ahmedabad, India. In J.-C. Thill & S. Dragicevic (Eds.), GeoComputational analysis and modeling of regional systems, advances in geographic information science (pp. 121–141). Cham: Springer. https://doi.org/10.1007/978-3-319-59511-5_8.

    Chapter  Google Scholar 

  • Pathan, S. K., Shukla, V. K., Patel, R. G., Patel, B. R., & Mehta, K. S. (1991). Urban land use mapping: A case study of Ahmedabad city and its environs. Journal of the Indian Society of Remote Sensing, 19(2), 95–112.

    Google Scholar 

  • Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: a Land transformation model. Computers, Environment and Urban Systems, 26(6), 553–575.

    Google Scholar 

  • Pontius, R. G., Huffaker, D., & Denman, K. (2004). Useful techniques of validation for spatially explicit land-change models. Ecological Modelling, 179(4), 445–461.

    Google Scholar 

  • Raghuvanshi, T. K., Negassa, L., & Kala, P. M. (2015). GIS based Grid overlay method versus modeling approach—A comparative study for landslide hazard zonation (LHZ) inMeta Robi District of West Showa Zone in Ethiopia. Egyptian Journal of Remote Sensing and Space Sciences, 18(2), 235–250.

    Google Scholar 

  • Ramachandra, T. V., Aithal, B. H., & Sanna, D. D. (2012). Insights to urban dynamics through landscape spatial pattern analysis. International Journal of Applied Earth Observation and Geoinformation, 18(8), 329–343.

    Google Scholar 

  • Ramachandra, T. V., Setturu, B., Rajan, K. S., & Subash Chandran, M. D. (2016). Stimulus of developmental projects to landscape dynamics in Uttara Kannada, Central Western Ghats. Egyptian Journal of Remote Sensing and Space Sciences, 19(2), 175–193.

    Google Scholar 

  • Rizk Hegazy, I., & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate, Egypt. International Journal of Sustainable Built Environment, 4(1), 117–124.

    Google Scholar 

  • Rodrigue, J. P., Comtois, C., & Slack, B. (2016). The geography of transport systems (4th ed.). New York: Routledge. ISBN: 978–0–203–37118–3 (ebk).

  • Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructures of cognition (Vol. 1, p. 318). Cambridge: MIT Press.

    Google Scholar 

  • Schneider, L. C., & Pontius, R. G. (2001). Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1–3), 83–94.

    Google Scholar 

  • Sekertekin, A., & Bonafoni, S. (2020). Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2), 294. https://doi.org/10.3390/rs12020294.

    Article  Google Scholar 

  • Sikarwar, A., & Chattopadhyay, A. (2016). Change in land use-land cover and population dynamics: A town-level study of Ahmedabad city sub-district of Gujarat. International Journal of Geomatics and Geosciences, 7(2), 225–234.

    Google Scholar 

  • Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525–552.

    Google Scholar 

  • Sinha, S., Sharma, L. K., & Nathawat, M. S. (2015). Improved land-use/land-cover classification of semi-arid deciduous forest landscape using thermal remote sensing. Egyptian Journal of Remote Sensing and Space Sciences, 18(2), 217–233.

    Google Scholar 

  • Sivakumar, V. (2014). Urban mapping and growth prediction using remote sensing and GIS techniques, Pune, India. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-8(December), 967–970.

    Google Scholar 

  • Spence, M., Annez, P. C., & Buckley, R. M. (2009). Urbanization and growth. Commission on growth and development. World Bank. © World Bank. https://openknowledge.worldbank.org/handle/10986/2582 License: CC BY 3.0 IGO.

  • Stow, A., & Chen, D. M. (2002). Sensitivity of multi-temporal NOAA AVHRR data of an urbanizing region to land use/cover changes and misregistration. Remote Sensing of Environment, 80(2), 297–307.

    Google Scholar 

  • Subedi, P., Subedi, K., & Thapa, B. (2013). Application of a hybrid cellular automaton–Markov (CA–Markov) model in land-use change prediction: A case study of saddle creek drainage basin Florida. Applied Ecology and Environmental Science, 1(6), 126–132.

    Google Scholar 

  • Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: Metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 5(1), 29–39.

    Google Scholar 

  • Sudhira, H. S., Ramachandra, T. V., & Subrahmanya, M. H. B. (2007). Bangalore. Cities, 24(5), 379–390.

    Google Scholar 

  • Taubenbock, H., Wegmann, M., Roth, A., Mehl, H., & Dech, S. (2009). Urbanization in India-Spatio temporal analysis using remote sensing data. Computers, Environment and Urban System, 33(3), 179–188.

    Google Scholar 

  • United Nations Department of Economic and Social Affairs/Population Division World Urbanization Prospects: The 2012 Revision.

  • Van, S. L. J., Verburg, P. H., Bregt, A., & Geertman, S. (2011). Core principles and concepts in land-use modeling: A literature review. In E. Koomen & J. Borsboom-Van Beurden (Eds.), Land-use modeling in planning practice (pp. 35–57). Dordrecht: Springer Science and Business Media B.V.

    Google Scholar 

  • Wang, C., Lei, S., Elmore, A. J., Jia, D., & Mu, S. (2019). Integrating temporal evolution with cellular automata for simulating land cover change. Remote Sensing, 11(3), 301.

    Google Scholar 

  • Yeh, A. G., & Li, X. (2001). Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogrammetric Engineering & Remote Sensing, 67(1), 83–90.

    Google Scholar 

  • Zeng, Y. N., Wu, G. P., Zhan, F. B., & Zhang, H. H. (2008). Modeling spatial land use pattern using autologistic regression. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(Part B2), 115–118.

    Google Scholar 

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.

    Google Scholar 

  • Zhan, X., Sohlberg, R. A., Townshend, J. R. G., DiMiceli, C., Carroll, M. L., Eastman, J. C., et al. (2002). Detection of land cover changes using MODIS 250m data—Google zoeken. Remote Sensing of Environment, 83(1&2), 336–350.

    Google Scholar 

  • Zhang, P., Gong, M., Su, L., Liu, J., & Li, Z. (2016). Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 24–41.

    Google Scholar 

  • Zhang, W., & Wang, H. (2017). Fourth international conference on transportation information and safety (ICTIS), August 8–10, Banff, Canada.

Download references

Acknowledgements

The first and second authors are very much thankful to Honorable Vice-Chancellor of the Central University of Gujarat, Prof. Rama Shanker Dubey and Dr. Bhawana Pathak, Dean, School of Environment and Sustainable Development (SESD), Central University of Gujarat (CUG), Gandhinagar for providing the infrastructure to carry out the research. We acknowledge the help of Dr. T.P. Singh, Director, Baskaracharya Institute of Space Applications and Geoinformatics (BISAG), Department of Science and Technology, Government of Gujarat, Gandhinagar, for providing laboratory facility and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulami Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

No.

Informed consent

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatoo, S.A., Sahu, P., Kalubarme, M.H. et al. Monitoring land use changes and its future prospects using cellular automata simulation and artificial neural network for Ahmedabad city, India. GeoJournal 87, 765–786 (2022). https://doi.org/10.1007/s10708-020-10274-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-020-10274-5

Keywords

Navigation