Skip to main content

Advertisement

Log in

Mining boundary effects in areally referenced spatial data using the Bayesian information criterion

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Statistical models for areal data are primarily used for smoothing maps revealing spatial trends. Subsequent interest often resides in the formal identification of ‘boundaries’ on the map. Here boundaries refer to ‘difference boundaries’, representing significant differences between adjacent regions. Recently, Lu and Carlin (Geogr Anal 37:265–285, 2005) discussed a Bayesian framework to carry out edge detection employing a spatial hierarchical model that is estimated using Markov chain Monte Carlo (MCMC) methods. Here we offer an alternative that avoids MCMC and is easier to implement. Our approach resembles a model comparison problem where the models correspond to different underlying edge configurations across which we wish to smooth (or not). We incorporate these edge configurations in spatially autoregressive models and demonstrate how the Bayesian Information Criteria (BIC) can be used to detect difference boundaries in the map. We illustrate our methods with a Minnesota Pneumonia and Influenza Hospitalization dataset to elicit boundaries detected from the different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Boston

    Google Scholar 

  2. Anselin L (1990) Spatial dependence and spatial structural instability in applied regression analysis. J Reg Sci 30:185–207

    Article  Google Scholar 

  3. Assuncao R, Krainski E (2009) Neighborhood dependence in Bayesian spatial models. Biom J 51:851–869

    Article  Google Scholar 

  4. Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press, Boca Raton

    Google Scholar 

  5. Banerjee S, Gelfand AE (2006) Bayesian wombling: curvilinear gradient assessment under spatial process models. J Am Stat Assoc 101:1487–1501

    Article  Google Scholar 

  6. Barbujani G, Sokal RR (1990) Zones of sharp genetic change in Europe are also linguistic boundaries. Proc Natl Acad Sci USA 87:1816–1819

    Article  Google Scholar 

  7. Barry R, Pace RK (1999) A Monte Carlo estimator of the log determinant of large sparse matrices. Linear Algebra Appl 289:41–54

    Article  Google Scholar 

  8. Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer-Verlag, Berlin. ISBN 0-387-96098-8

    Google Scholar 

  9. Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc, B 36(2):192–236

    Google Scholar 

  10. Bocquet-Appel JP, Bacro JN (1994) Generalized wombling. Syst Biol 43:442–448

    Google Scholar 

  11. Carlin BP, Louis TA (2000) Bayes and empirical bayes methods for data analysis, 2nd edn. Chapman and Hall/CRC Press, Boca Raton

    Book  Google Scholar 

  12. Cleveland WS, Devlin SJ (1988) Locally-weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

  13. Cressie NAC (1993) Statistics for spatial data, 2nd edn. Wiley, New York

    Google Scholar 

  14. Cromley EK, McLafferty SL (2002) GIS and public health. Guilford Publications, New York

    Google Scholar 

  15. Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Ann Stat 1:209–230

    Article  Google Scholar 

  16. Fortin MJ (1994) Edge detection algorithms for two-dimensional ecological data. Ecology 75:956–965

    Article  Google Scholar 

  17. Fortin MJ, Drapeau P (1995) Delineation of ecological boundaries: comparisons of approaches and significance tests. Oikos 72:323–332

    Article  Google Scholar 

  18. Fortin MJ (1997) Effects of data types on vegetation boundary delineation. Can J For Res 27:1851–1858

    Article  Google Scholar 

  19. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC Press, Boca Raton

    Google Scholar 

  20. Hoeting JA, Madigan D, Raftery AE, Volinsky C (1999) Bayesian model averaging: a tutorial. Stat Sci 14:382–417

    Article  Google Scholar 

  21. Jacquez GM, Greiling DA (2003). Local clustering in breast, lung and colorectal cancer in Long Island, New York. Int J Health Geogr 2:3

    Article  Google Scholar 

  22. Jacquez GM, Greiling DA (2003). Geographic boundaries in breast, lung and colorectal cancers in relation to exposure to air toxics in long Island, New York. Int J Health Geogr 2:4

    Article  Google Scholar 

  23. LeSage JP (1997) Analysis of spatial contiguity influences on state price level formation. Int J Forecast 13:245–253

    Article  Google Scholar 

  24. LeSage JP, Pace K (2009) Introduction to spatial econometrics. Chapman and Hall/CRC, Boca Raton, FL

    Book  Google Scholar 

  25. LeSage JP, Parent O (2007) Bayesian model averaging for spatial econometric models. Geogr Anal 39:241–267

    Article  Google Scholar 

  26. Lu H, Carlin BP (2005) Bayesian areal wombling for geographical boundary analysis. Geogr Anal 37:265–285

    Article  Google Scholar 

  27. Lu H, Reilly C, Banerjee S, Carlin BP (2007) Bayesian areal wombling via adjacency modeling. Environ Ecol Stat 14:433–452

    Article  Google Scholar 

  28. Ma H, Carlin BP, Banerjee S (2010) Hierarchical and joint site-edge methods for Medicare hospice service region boundary analysis. Biometrics 66(2):355–364

    Article  Google Scholar 

  29. Pace RK, Barry R (1997) Sparse spatial autoregressions. Stat Probab Lett 33:291–297

    Article  Google Scholar 

  30. Raftery AE (1995) Bayesian model selection in social research (with discussion). In: Marsden PV (ed) Sociological methodology 1995. Blackwell, Cambridge, MA, pp 111–195

    Google Scholar 

  31. Raftery AE, Madigan D, Hoeting J (1997) Bayesian model averaging for linear regression models. J Am Stat Assoc 92:179–191

    Article  Google Scholar 

  32. Robert C (2001) The Bayesian choice, 2nd ed. Springer, New York

    Google Scholar 

  33. Wall MM (2004) A close look at the spatial correlation structure implied by the CAR and SAR models. J Stat Plan Inference 121(2):311–324

    Article  Google Scholar 

  34. Waller, Gotway (2004) Applied spatial statistics for public health data. Wiley, New York

    Book  Google Scholar 

  35. Wheeler D, Waller L (2008) Mountains, valleys, and rivers: the transmission of raccoon rabies over a heterogeneous landscape. J Agric Biol Environ Stat 13:388–406

    Article  Google Scholar 

  36. Womble WH (1951) Differential systematics. Science 114:315–322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by NIH grants 1-R01-CA95995 and 1-RC1-GM092400-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Banerjee, S. & McBean, A.M. Mining boundary effects in areally referenced spatial data using the Bayesian information criterion . Geoinformatica 15, 435–454 (2011). https://doi.org/10.1007/s10707-010-0109-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-010-0109-0

Keywords

Navigation