Skip to main content
Log in

Investigating the Collapsible Behavior of Sedimentary Soil in Shallow Foundations

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Some unsaturated soils present volumetric instability with moisture variation, under constant stress. This paper presents results of an investigation on the behavior of a soil subjected to wetting, aimed at applying shallow foundations. The investigation occurred through laboratory tests (on natural and compacted samples) and field tests (load tests on plates with diameters of 0.80 m and 0.10 m), for analysis of the load x settlement curve and the behavior of natural soil collapse and compressed. From the results, it is highlighted that both in the laboratory and in the field, the undisturbed soil showed collapse behavior when wet, under stresses > 100 kN/m2; the compacted soil showed a significant reduction of settlement by collapse, indicating that it is a treatment option to support superficial foundations, being important to be careful with the width of the compacted layer; field tests, with different sizes of plates, suggest correlations between them, as well as with edometric tests; the load tests, with a 0.10 m diameter plate, proved to be promising for estimating the admissible stress of fine textured soils and for estimating the potential for collapse in the field, being able to help the projects of small works, supported on shallow foundations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Google Earth and UFCA—Adapted

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Source: Modified from Xavier (2018)

Fig. 6

Source: Xavier (2018)

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Some data generated or analyzed during this study are available in the repository: https://repositorio.ufpe.br/handle/123456789/32583. The data refer to the quote by Xavier JM (2018). Some data generated or analyzed during this study are available at the Library of the Federal University of Cariri, through Course Completion Work Monographs. Data are however available from the authors upon request. The data refer to citations by Alves VLS (2020), Chaves AMM (2018) and Landim IC (2017).

References

  • ABNT (Associação Brasileira de Normas Técnicas) (1984) Brazilian Standard NBR 6489: Bearing capacity tests on foundation ground. ABNT, Rio de Janeiro, Brazil

  • ABNT (Associação Brasileira de Normas Técnicas) (2019) Brazilian Standard NBR 6122: design and execution of foundations. Rio de Janeiro, Brazil: ABNT

  • Abbeche K, Bahloul O, Ayadat T, Bahloul A (2010) Treatment of collapsible soils by salts using the double consolidation method. Geotechnical special publication N°. 202 of the GeoShanghai International Conference, Shanghai, China, ASCE, pp 69–78

  • Abbeche K, Panczer G, Belagraa L (2020) Study of the effect of waste glass fibers incorporation on the collapsible soil stability behavior. KnE Eng. https://doi.org/10.18502/keg.v5i4.6806

    Article  Google Scholar 

  • Abdel-Mohsen HH, Ali AN (2014) Field study on collapsible soil Borg El Arab Region-Egypt. The eighth Alex. In: International conference on advances in structural and geotechnical engineering, Egypt, pp14–16

  • Abeyrathne A, Sivakumar V, Kodikara J (2019) Isotropic volumetric behaviour of compacted unsaturated soils within (v, vw, p) space. Can Geotech J 56(12):1756–1778. https://doi.org/10.1139/cgj-2018-0230

    Article  Google Scholar 

  • Akram I, Azam S (2022) Determination of saturated-unsaturated flow through silty sand. Geotech Geol Eng 40:469–481. https://doi.org/10.1007/s10706-021-01914-9

    Article  Google Scholar 

  • Alassal MA, Hassan AM, Elmamlouk HH (2023) Collapse potential prediction and characteristics of unsaturated sandy soils. Geotech Geol Eng 41:2759–2774. https://doi.org/10.1007/s10706-023-02425-5

    Article  Google Scholar 

  • Aldaood A (2019) Impact of fine materials on the saturated and unsaturated behavior of silty sand soil. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2019.11.005

    Article  Google Scholar 

  • Ali NA (2015) Performance of partially replaced collapsible soil—field study. Alex Eng J 54:527–532. https://doi.org/10.1016/j.aej.2015.05.002

    Article  Google Scholar 

  • Alidadi S, Alipour R, Shakeri M (2022a) Fractures in non-homogeneous rockfill materials from a micromechanics perspective. J Hydraul Struct 8(2):27–39

    Google Scholar 

  • Alidadi S, Alipour R, Shakeri, M (2022b) Influence of rockfill particle breakage on long-term settlement of embankment dams. In: Proceedings of the institution of civil engineers-geotechnical engineering, pp 1–11

  • Alipour R, Heshmati RAA, Karimiazar J, Esazadefar N, Asghari-Kaljahi E, Bahmani SH (2022) Resistance and swelling of Tabriz marl soils stabilised using nano-silica and nano-alumina. In: Proceedings of the institution of civil engineers-geotechnical engineering, pp 1–14

  • Alves VLS (2020) Estimativa da Capacidade de Carga do Solo por Meio de Prova de Carga com Placa em Miniatura Universidade Federal do Cariri, Juazeiro do Norte-CE Trabalho de Conclusão de Curso 84

  • Amadi AA, Osinubi KJ, Okoro JI (2023) Hydraulic conductivity of unsaturated specimens of lateritic soil-bentonite mixtures. Geotech Geol Eng 41:4431–4444. https://doi.org/10.1007/s10706-023-02524-3

    Article  Google Scholar 

  • ASTM Standard, D.5333 (1996) Standard test method for measurement of collapse potential of soils. ASTM International, West Conshohocken

    Google Scholar 

  • Ayeldeen M, Azzam W, Arab MG (2022) O uso de fibra para melhorar as características do solo dobrável estabilizado com cimento. Geotech Geol Eng 40:1873–1885. https://doi.org/10.1007/s10706-021-01997-4

    Article  Google Scholar 

  • Bandeira APN, Souza Neto JB, Rolim JID (2017) Recalque por Colapso do Solo e suas Manifestações Patológicas. XIII Congresso Internacional sobre Patologia e Reabilitação de Estruturas, Crato-CE. 7 a 9 de setembro de 2017. ISBN: 978-85-65425-32-2. Volume 1-B. pp 303–319

  • Barata FE (1962) Tentativa de Racionalização do Problema da Taxa Admissível de Fundações Diretas. Tese de livre Docência. Escola Nacional de Engenharia

  • Behnood A (2018) Soil and clay stabilization with calcium-and non-calcium-based additives: a state-of-the-art review of challenges, approaches and techniques. Transp Geotech 17:14–32. https://doi.org/10.1016/j.trgeo.2018.08.002

    Article  Google Scholar 

  • Ceará (2017) Juazeiro do Norte: perfil básico do município. Fortaleza/CE. 2017. Instituto de Pesquisa e Estratégia Econômica do Ceará. Available on: <www.ipece.ce.gov.br/.../perfil_basico/PBM.../Juazeiro%20do%20Norte.pdf.> Accessed 20 Dec 2018

  • Chali E, Maleki M (2021) Experimental study on mechanical behaviour of unsaturated silty sand in constant equivalent granular void ratio. Geotech Geol Eng 39:735–750. https://doi.org/10.1007/s10706-020-01518-9

    Article  Google Scholar 

  • Chaves AMM (2018) Determinação da Capacidade de Carga do Solo por Meio de Prova de Carga em Miniatura. Monography. Civil Engineering (Federal University of Cariri—UFCA). Juazeiro do Norte. Ceará State. Brazil

  • Cintra JCA (1998) Fundações em Solos Colapsíveis. Escola de Engenharia de São Carlos—SP, p 106

  • Cintra JCA, Aoki N, Albiero JH (2003) Tensão admissível em Fundações Diretas. São Carlos: Ed. Rima. p 142

  • Cruz Junior (2019) Estudo da Resistência ao Cisalhamento de um Solo Colapsível. Monography. Civil Engineering (Federal University of Cariri—UFCA). Juazeiro do Norte. Ceará State. Brazil

  • de Camapum Carvalho JC, Gitirana G (2021) Unsaturated soils in the context of tropical soils. Soils Rock. https://doi.org/10.28927/sr.2021.068121

    Article  Google Scholar 

  • Deng LS, Fan W, Yin YP, Cao YB (2018) Case study of a collapse investigation of loess sites covered by very thick loess-paleosol interbedded strata. Int J Geomech ASCE. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001160

    Article  Google Scholar 

  • Falcão PR, Baroni M, Masutti GC, Pinheiro RJB, Fagundes DF (2023) assessment of the impact of inundation on the strength of a lateritic and collapsible soil. Geotech Geol Eng 41:4761–4773. https://doi.org/10.1007/s10706-023-02545-y

    Article  Google Scholar 

  • Ferreira SRM (1995) Colapso e Expansão de Solos Naturais Não Saturados Devido à Inundação. Tese de Doutorado. COPPE/UFRJ, Rio de Janeiro, p 379

    Google Scholar 

  • Ferreira SRM, Lacerda WA (1995) Volume change measurements in collapsible soil by laboratory and field tests. Unsaturated soils, Alonso and Delage eds., Vol. 2, pp 47–854

  • Fredlund DG (2018) State of practice for use of the SWCC in geotechnical engineering. Can Geotech J 56(8):1059–1069. https://doi.org/10.1139/cgj-2018-0434

    Article  Google Scholar 

  • Fredlund DG, Houston S (2009) Protocol for the assessment of unsaturated soil properties in geotechnical engineering practice. Can Geotech J 46(6):694–707. https://doi.org/10.1139/T09-010

    Article  Google Scholar 

  • Fredlund DG, Morgenstern NR (1976) Constitutive relations for volume change in unsaturated soils. Can Geotech J 13(3):261–276. https://doi.org/10.1139/t76-029

    Article  Google Scholar 

  • Futai MM, Almeida MSS, Silva Filho FC (2000) Pile collapse analyses using an elasto-plastic model, paper presented at the ISRM international symposium, Melbourne, Australia, November

  • Haeri S M, Zamani A, Garakani AA (2012) Collapse potential and permeability of undisturbed and remolded loessial soil samples, Springer, unsaturated soils: research and applications, Publishers Claudio Mancuso, Cristina Jommi, Francesca D’Onza. Springer, Berlin, pp 301–308. https://doi.org/10.1007/978-3-642-31116-1

  • Hanna A, Mashhour I, Nguyen N (2022) Drag load on end-bearing piles in partially saturated collapsible soil. Geotech Geol Eng 40:3431–3442. https://doi.org/10.1007/s10706-022-02098-6

    Article  Google Scholar 

  • Houston S (2014) Characterization of unsaturated soils: the importance of response to wetting. Geo-Congress 2014 Keynote Lectures: pp 77–96. ASCE. https://doi.org/10.1061/9780784413289.004

  • Houston SL, Houston WN (2016) Level surveys and patterns of movement in collapsible and expansive soils studies. J Perform Constr Facil. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000907.ASCE

    Article  Google Scholar 

  • Houston SL, Houston WN, Zapata C, Lawrence C (2001) Geotechnical engineering practice for collapsible soils. Geotech Geol Eng 19(3–4):333–355. https://doi.org/10.1023/A:1013178226615

    Article  Google Scholar 

  • Islam T, Kodikara J (2015) Interpretation of the loading–wetting behaviour of compacted soils within the MPK framework. Part I Static Compact Can 1 Geotech J 53(5):783–805

    Article  Google Scholar 

  • Jardim WFD (1981) Estudo da pressão admissível de fundações diretas em solo residual de gnaisse através de provas de carga em placa. Dissertação de Mestrado – UFRJ. Rio de Janeiro

  • Jennings JE, Knight K (1975) A guide to construction on or with materials exhibiting additional settlement due to a collapse of grain structure. In: Proceedings IV regional conference for Africa on soil mechanics and foundation engineering. Durban, pp 99–105

  • Landim IC (2017) Análise do potencial de colapso do campo experimental da UFCA através de prova de carga em placa e ensaio edométrico simples Monografia. Universidade Federal do Cariri, Juazeiro do Norte, p 62

    Google Scholar 

  • Latifi N, Eisazadeh A, Marto A, Meehan CL (2017) Tropical residual soil stabilization: a powder form material for increasing soil strength. Constr Build Mater 147:827–836. https://doi.org/10.1016/j.conbuildmat.2017.04.115

    Article  CAS  Google Scholar 

  • Lian B, Peng J, Zhan H, Cui X (2019) Effect of randomly distributed fibre on triaxial shear behavior of loess. Bull Eng Geol Env. https://doi.org/10.1007/s10064-019-01666-0

    Article  Google Scholar 

  • Love AEH (1892) A treatise on the mathematical theory of elasticity. Vol 1, Cambridge. At The University Press

  • Mahmoud HH, Houston WN, Houston SL (1995) Apparatus and procedure for an in situ collapse test. Geotech Test J ASTM Int 18(4):431–440. https://doi.org/10.1520/gtj11018j

    Article  Google Scholar 

  • Mendonça Neto HC, Ferreira SRM (2015) Behavior of volume change due to wetting in a collapsible soil to use in irrigation channel. J Civ Eng Archit 2:770–778

    Google Scholar 

  • Nguyen N, Hanna A (2021) At-rest earth pressure of overconsolidated collapsible soil subjected to full inundation. Geotech Geol Eng 39:2019–2027. https://doi.org/10.1007/s10706-020-01603-z

    Article  Google Scholar 

  • Noorzad R, Pakniat H (2016) Investigating the effect of sample disturbance, compaction and stabilization on the collapse index of soils. Environ Earth Sci. https://doi.org/10.1007/s12665-016-6073-8

    Article  Google Scholar 

  • Pereira MS, Tsuha CHC, Vilar OM, Schiavon JA, Tibana S, Saboya F, Dias D (2019) Performance evaluation of a collapsible soil reinforced with compacted lateritic soil columns. J Geotech Geoenviron Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0002093

    Article  Google Scholar 

  • Pinéo T RG, Palheta ESM, Costa FG, Vasconcelos AM, Gomes IP, Gomes FEMG, Bessa MDMR, Lima AF, Holanda JLR, Freire DPC (2020) Mapa Geológico do Estado do Ceará. Projeto Geologia e Recursos Minerais do Estado do Ceará. Escala 1:500.000. Fortaleza: CPRM, 1 mapa. Accessed 02 Aug 2022. http://rigeo.cprm.gov.br/jspui/handle/doc/20418

  • Pouranaghiazar M, Russell AR, Khalili N (2013) The cone penetration test in unsaturated sands. Geotechnique 63:1209–1220. https://doi.org/10.1680/geot.12.p.083

    Article  Google Scholar 

  • Rastegarnia A, Sohrabibidar A, Bagheri V, Razifard M, Zolfaghari A (2017) Assessment of relationship between grouted values and calculated values in the Bazoft Dam Site. Geotech Geol Eng 35(4):1299–1310. https://doi.org/10.1007/s10706-017-0176-1

    Article  Google Scholar 

  • Rodrigues RA, Soares FVP, Sanchez M (2021) Settlement of footings on compacted and natural collapsible soils upon loading and soaking. J Geotech Geoenviron Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0002479

    Article  Google Scholar 

  • Rolim JID, Bandeira APN (2016) Estudo de um solo colapsível no município do Crato-CE. XVIII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, Belo Horizonte-MG

  • Rust E, Heymann G, Jones GA (2005) Collapse potential of partly saturated sandy soils from Mozal, Moxambique. J South Afr Inst Civ Eng- SAICE 47(1):8–14

    Google Scholar 

  • Souza Neto JB (2004) The behavior of a collapsible soil evaluation through in situ and laboratory testings and settlement predicition due to wetting. D.Sc. Thesis, Federal University of Rio de Janeiro, Rio de Janeiro, p 432

  • Souza Neto JB, Coutinho RQ, Lacerda WA (2005) Evaluation of the collapsibility of a sandy soil by in situ collapse tests. In: 16th International conference on soil mechanics and geotechnical engineering. Osaka, Japan. https://doi.org/10.3233/978-1-61499-656-9-735

  • Souza Neto JB, Martins PA, Perez ENP, Santos MVF (2012) Avaliação da Colapsibilidade do Solo de um Trecho do Projeto de Integração do Rio São Francisco por Meio de Ensaios de Laboratório e Campo. XVI Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, Porto de Galinhas - PE. V 01, p 221–221

  • Souza JHA, Bandeira APN, Souza FLM (2018) Manifestações Patológicas em Obras Populares. XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, Salvador

  • Tavares MWL (2019) Estudo do Melhoramento de um Solo Colapsível. Universidade Federal do Cariri, Monografia

    Google Scholar 

  • Teixeira AH, Godoy NS (1996) Análise e Projetos de Fundações Rasas; in Fundações Teoria e Prática; ABMS/ABEF/PINI; pp 227–264

  • Terzaghi K, Peck RB (1967) Soil mechanics in engineering practice, 2nd edn. Wiley, New York

    Google Scholar 

  • Thompson RW, Houston SL (2016) A case study of a housing development on collapsible alluvium. In: Proceedings in the fourth geo-China international conference. Geo-China 2016: innovative technologies for severe weather and climate change. July 25–27, ASCE, Shandong, China. https://doi.org/10.1061/9780784480076.005

  • Van Der Veen C (1953) Bearing capacity of a pile. International conference soil mechanics foundation engineering, 3, Zurich. v 2

  • Vilar OM, Rodrigues RA (2011) Collapse behavior of soil in a Brazilian region affected by a rising water table. Can Geotech J 48:226–233. https://doi.org/10.1139/T10-065

    Article  Google Scholar 

  • Vilar OM, Ferreira SRM (2015) Solos colapsíveis e expansivos - Capítulo 15. In: Carvalho JC, Neves GF, Machado SL, Mascarenha MMA, Silva Filho FC (Org.). Solos não saturados no contexto geotécnico. 1ed. São Paulo: ABMS, vol 1, pp 415–440

  • Walsh K, Houston WN, Houston SL (1993) Evaluation of in-place wetting using soil suction measurements. J Geotech Eng ASCE 119(15):862–873. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:5(862)

    Article  Google Scholar 

  • Xavier JM (2018) Estudo do Comportamento Geotécnico de um Solo Colapsível Voltado para Fundações Superficiais. Dissertação de Mestrado, UFPE. Recife. p 175. https://repositorio.ufpe.br/handle/123456789/32583

  • Xavier JM, Coutinho RQ, Souza Neto JB, Bandeira APN (2018) Características de um solo colapsível e o efeito do grau de compactação In: XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, Salvador. ABMS, 2018. V 1

  • Zamani M, Badv K (2019) Assessment of the geotechnical behavior of collapsible soils: a case study of the mohammad-abad railway station soil in semnan. Geotech Geol Eng. https://doi.org/10.1007/s10706-018-00800-1

    Article  Google Scholar 

  • Zhang L, Li T, Zhang Y (2023) A simple method for predicting wetting-induced collapse behavior of compacted loess with various initial void ratios and moisture contents. Environ Earth Sci 82(1):24. https://doi.org/10.1007/s12665-022-10674-5

    Article  Google Scholar 

Download references

Funding

The authors declare that the studies carried out to obtain data that will be published in the article had financial support from CNPq-National Council for Scientific and Technological Development, through the author Xavier JM’s master’s scholarship.

Author information

Authors and Affiliations

Authors

Contributions

APNB, JBSN and RQC guided data collection during the research phase. They also elaborated and revised the text of the article. JMX, AMMC and VLSA contributed with in situ and laboratory tests. They also revised the text of the article.

Corresponding author

Correspondence to Ana Patrícia Nunes Bandeira.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandeira, A.P.N., de Souza Neto, J.B., Coutinho, R.Q. et al. Investigating the Collapsible Behavior of Sedimentary Soil in Shallow Foundations. Geotech Geol Eng 42, 2725–2743 (2024). https://doi.org/10.1007/s10706-023-02701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-023-02701-4

Keywords

Navigation