Skip to main content
Log in

Initiation Pressure and Location of Fracture Initiation in Elliptical Wellbores

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Due to the shear failure caused by the compressive stress concentration in the wellbore wall and the non-isotropy of the in situ stresses, the actual shape of the wellbore cross-section is oval instead of what is usually considered a circle. The purpose of this paper is to find the fracture initiation pressure and the initiation location in elliptical wellbores. For this purpose, a simple analytical model is used. This model is obtained by combining analytical relations of stress distribution around elliptical wellbores and material tensile strength criterion to predict crack initiation. According to the results, if the in situ stresses are isotropic, the fracture initiation location is in the direction of the longest diameter of the wellbore, and the initiation pressure decreases with the increase of the shape parameter. In the case that the in situ stresses are non-isotropic, a critical shape parameter is defined. If the shape parameter is less than the critical value, the fracture initiation in the wellbore wall is along the maximum in situ stress and the initiation pressure increases with the increase of the shape parameter, and if the shape parameter is greater than the critical value, up to 0.33, the fracture initiation in the wellbore wall occurs in the direction of the minimum in situ stress and the initiation pressure decreases with the increase of the shape parameter. This model can be used in estimating the fracture initiation pressure and determining the fracture initiation position in elliptical cavities in the field and laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali Lakirouhani.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix: Stress Distribution Around Elliptical Wellbores

The stress distribution around the elliptical wellbore have been obtained using the conformal mapping technique. Conformal mapping/transformation is a technique used in complex analysis to transform one complex plane onto another while preserving the angles between intersecting curves. First, Muskhelishvili (Muskhelishvili 1963) provided the following mapping function to map an ellipse to a unit circle:

$$ f\left( \varsigma \right) = R\left( {\frac{1}{\varsigma } + m\,\varsigma } \right) $$
(14)

where

$$ R = \frac{a + b}{2} $$
(15)

and

$$ m = \frac{a - b}{{a + b}} $$
(16)
$$ \varsigma = \rho \left( {\cos \theta + i\sin \theta } \right) $$
(17)
$$ \rho = \frac{R}{r}\,\,\,\,\,;\,\,\,\,\left( {R \le r} \right) $$
(18)

where a, b are the semi-axes of the ellipse (Fig. 

Fig. 22
figure 22

Stress around the elliptical wellbore

22). Indeed, the distance from the center of the unit circle is defined by \(\rho = \frac{R}{r}\), where \(R = \frac{a + b}{2}\) is a constant and r is variable. Any point with \(\rho = 1\) is on the ellipse wall or on the circumference of the unit circle.

By using this mapping function and converting the ellipse into a circle, the stress distribution at any point around the elliptical hole is obtained as follows (Liu et al. 2021):

$$ \begin{gathered} \sigma_{\theta \theta } = \frac{1}{{2\,\left( {m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} } \right)}}\, \times \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\left[ {\left( { - \rho^{ - 2} + m\,\cos 2\theta } \right)\,\frac{{\rho^{ - 2} \left( { - \sigma_{1} - \sigma_{3} } \right)\,\left( {\rho^{ - 4} - m^{2} \cos 4\theta } \right)}}{{m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} }}} \right. - \frac{{m^{3} \rho^{ - 2} \left( { - \sigma_{1} - \sigma_{3} } \right)\,\sin 4\theta \,\sin 2\theta }}{{m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} }} - \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,4\,\rho^{ - 2} \,\left( { - \rho^{ - 2} + m\,\cos 2\theta } \right)\,\frac{{\left( {\rho^{ - 2} \cos 2\theta + m\cos 4\theta } \right)\,\left( {GE + HF} \right) + \,\left( {HE - GF} \right)\,\left( {m\,\sin 4\theta + \rho^{ - 2} \sin 2\theta } \right)}}{{E^{2} + F^{2} }} + \hfill \\ \,\,\,\,\,\,\,\,\,\,\,4m\,\sin 2\theta \,\frac{{\left( {\rho^{ - 4} \cos 2\theta + m\,\rho^{ - 2} \cos 4\theta } \right)\,\left( {HE - GF} \right) - \,\left( {GE + HF} \right)\,\left( {m\,\rho^{ - 2} \sin 4\theta + \rho^{ - 4} \sin 2\theta } \right)}}{{E^{2} + F^{2} }} + \hfill \\ \,\,\,\,\,\,\,\,\,\,\,2\,\left( { - \rho^{ - 2} + m\,\cos 2\theta } \right)\,\left( {\frac{{ - \sigma_{1} - \sigma_{3} }}{2} + P_{w} } \right) + \hfill \\ \,\,\,\,\,\,\,\,\,\,\rho^{ - 2} \left( {\sigma_{1} - \sigma_{3} } \right)\,\left( {\left( { - \rho^{ - 2} + m\,\cos 2\theta } \right)\cos \left( {2\alpha + 2\theta } \right)\, + m\,\sin 2\theta \sin \left( {2\alpha + 2\theta } \right)} \right)\, - \hfill \\ \,\,\,\,\,\,\,\,\,\frac{{2N\left( {\left( { - \rho^{ - 2} + m\,\cos 2\theta } \right) - \,\frac{{\sigma_{1} - \sigma_{3} }}{2}m\sin 2\theta \sin 2\alpha } \right)\,\left( {LJ + MK} \right)}}{{J^{2} + K^{2} }} - \hfill \\ \,\,\,\,\,\,\,\,\,\left. {\frac{{2\left( {MJ - LK} \right)\,\left( {\frac{{\sigma_{1} - \sigma_{3} }}{2}\sin 2\alpha \left( { - \rho^{ - 2} + m\,\cos 2\theta } \right) + Nm\,\sin 2\theta } \right)}}{{J^{2} + K^{2} }}} \right]\, + \hfill \\ \,\,\,\,\,\,\,\,\frac{{2\,\left( {m\,\left( {\frac{{ - \sigma_{1} - \sigma_{3} }}{2} + P_{w} } \right) + \frac{{\sigma_{1} - \sigma_{3} }}{2}\cos 2\alpha + \frac{{ - \sigma_{1} - \sigma_{3} }}{{4\rho^{2} }}\cos 2\theta } \right)\,\left( {m\, - \rho^{ - 2} \cos 2\theta } \right)}}{{m^{2} - 2m\rho^{ - 2} \,\cos 2\theta + \rho^{ - 4} }} + \hfill \\ \,\,\,\,\,\,\,\,\frac{{2\rho^{ - 2} \,\left( {\frac{{\sigma_{1} - \sigma_{3} }}{2}\sin 2\alpha - \frac{{ - \sigma_{1} - \sigma_{3} }}{{4\rho^{2} }}\sin 2\theta } \right)\,\sin 2\theta \,}}{{m^{2} - 2m\rho^{ - 2} \,\cos 2\theta + \rho^{ - 4} }} \hfill \\ \end{gathered} $$
(19)
$$ \begin{gathered} \sigma_{\rho \rho } = \frac{ - 1}{{2\,\left( {m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} } \right)}}\, \times \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\left[ {\left( { - \rho^{ - 2} + m\,\cos 2\theta } \right)\,\frac{{\rho^{ - 2} \left( { - \sigma_{1} - \sigma_{3} } \right)\,\left( {\rho^{ - 4} - m^{2} \cos 4\theta } \right)}}{{m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} }}} \right. - \frac{{m^{3} \rho^{ - 2} \left( { - \sigma_{1} - \sigma_{3} } \right)\,\sin 4\theta \,\sin 2\theta }}{{m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} }} - \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,4\,\rho^{ - 2} \,\left( { - \rho^{ - 2} + m\,\cos 2\theta } \right)\,\frac{{\left( {\rho^{ - 2} \cos 2\theta + m\cos 4\theta } \right)\,\left( {GE + HF} \right) + \,\left( {HE - GF} \right)\,\left( {m\,\sin 4\theta + \rho^{ - 2} \sin 2\theta } \right)}}{{E^{2} + F^{2} }} + \hfill \\ \,\,\,\,\,\,\,\,\,\,\,4m\,\sin 2\theta \,\frac{{\left( {\rho^{ - 4} \cos 2\theta + m\,\rho^{ - 2} \cos 4\theta } \right)\,\left( {HE - GF} \right) - \,\left( {GE + HE} \right)\,\left( {m\,\rho^{ - 2} \sin 4\theta + \rho^{ - 4} \sin 2\theta } \right)}}{{E^{2} + F^{2} }} + \hfill \\ \,\,\,\,\,\,\,\,\,\,\,2\,\left( { - \rho^{ - 2} + m\,\cos 2\theta } \right)\,\left( {\frac{{ - \sigma_{1} - \sigma_{3} }}{2} + P_{w} } \right) + \hfill \\ \,\,\,\,\,\,\,\,\,\,\rho^{ - 2} \left( {\sigma_{1} - \sigma_{3} } \right)\,\left( {\left( {m\,\cos 2\theta - \rho^{ - 2} } \right)\cos \left( {2\alpha + 2\theta } \right)\, + m\,\sin 2\theta \sin \left( {2\alpha + 2\theta } \right)} \right)\, - \hfill \\ \,\,\,\,\,\,\,\,\,\frac{{2N\left( {\left( { - \rho^{ - 2} + m\,\cos 2\theta } \right) - \,\frac{{\sigma_{1} - \sigma_{3} }}{2}m\sin 2\theta \sin 2\alpha } \right)\,\left( {LJ + MK} \right)}}{{J^{2} + K^{2} }} - \hfill \\ \,\,\,\,\,\,\,\,\,\left. {\frac{{2\left( {MJ - LK} \right)\,\left( {\frac{{\sigma_{1} - \sigma_{3} }}{2}\sin 2\alpha \left( { - \rho^{ - 2} + m\,\cos 2\theta } \right) + Nm\,\sin 2\theta } \right)}}{{J^{2} + K^{2} }}} \right]\, + \hfill \\ \,\,\,\,\,\,\,\,\frac{{2\,\left( {m\,\left( {\frac{{ - \sigma_{1} - \sigma_{3} }}{2} + P_{w} } \right) + \frac{{\sigma_{1} - \sigma_{3} }}{2}\cos 2\alpha + \frac{{ - \sigma_{1} - \sigma_{3} }}{{4\rho^{2} }}\cos 2\theta } \right)\,\left( {m\, - \rho^{ - 2} \cos 2\theta } \right)}}{{m^{2} - 2m\rho^{ - 2} \,\cos 2\theta + \rho^{ - 4} }} + \hfill \\ \,\,\,\,\,\,\,\,\frac{{2\rho^{ - 2} \,\left( {\frac{{\sigma_{1} - \sigma_{3} }}{2}\sin 2\alpha - \frac{{ - \sigma_{1} - \sigma_{3} }}{{4\rho^{2} }}\sin 2\theta } \right)\,\sin 2\theta \,}}{{m^{2} - 2m\rho^{ - 2} \,\cos 2\theta + \rho^{ - 4} }} \hfill \\ \end{gathered} $$
(20)
$$ \begin{gathered} \tau_{\rho \theta } = \frac{1}{{2\,\left( {m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} } \right)}}\, \times \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\left[ {\,\frac{{\left( { - \sigma_{1} - \sigma_{3} } \right)\,\left( {\rho^{ - 4} - m^{2} \cos 4\theta } \right)\rho^{ - 2} m\,\sin 2\theta }}{{m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} }}} \right. + \frac{{\left( { - \sigma_{1} - \sigma_{3} } \right)\,\left( {m\cos 2\theta - \rho^{ - 2} } \right)m^{2} \rho^{ - 2} \sin 4\theta \,}}{{m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} }} - \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,4m\,\sin 2\theta \,\,\frac{{\left( {\rho^{ - 4} \cos 2\theta + m\rho^{ - 2} \cos 4\theta } \right)\,\left( {GE + HF} \right) + \,\left( {HE - GF} \right)\,\left( {m\rho^{ - 2} \sin 4\theta + \rho^{ - 4} \sin 2\theta } \right)}}{{E^{2} + F^{2} }} - \hfill \\ \,\,\,\,\,\,\,\,\,\,\,4\left( {m\cos 2\theta - \rho^{ - 2} } \right)\,\frac{{\left( {\rho^{ - 4} \cos 2\theta + m\,\rho^{ - 2} \cos 4\theta } \right)\,\left( {HE - GF} \right) - \,\left( {GE + HF} \right)\,\left( {m\,\rho^{ - 2} \sin 4\theta + \rho^{ - 4} \sin 2\theta } \right)}}{{E^{2} + F^{2} }} + \hfill \\ \,\,\,\,\,\,\,\,\,\,\,2\,m\,\left( {\frac{{ - \sigma_{1} - \sigma_{3} }}{2} + P_{w} } \right)\sin 2\theta + \hfill \\ \,\,\,\,\,\,\,\,\,\,2\frac{{\sigma_{1} - \sigma_{3} }}{2}\rho^{ - 2} m\,\sin 2\theta \,\cos \left( {2\alpha + 2\theta } \right) - 2\left( {m\,\cos 2\theta - \rho^{ - 2} } \right)\frac{{\sigma_{H} - \sigma_{h} }}{2}\rho^{ - 2} \sin \left( {2\alpha + 2\theta } \right)\, - \hfill \\ \,\,\,\,\,\,\,\,\,\frac{{2\left( {\frac{{\sigma_{1} - \sigma_{3} }}{2}\left( {m\,\cos 2\theta - \rho^{ - 2} } \right)\sin 2\alpha + Nm\,\sin 2\theta } \right)\,\left( {LJ + MK} \right)}}{{J^{2} + K^{2} }} - \hfill \\ \,\,\,\,\,\,\,\,\left. {\frac{{2\left( {MJ - LK} \right)\left( {N\left( {m\,\cos 2\theta - \rho^{ - 2} } \right) - \frac{{\sigma_{H} - \sigma_{h} }}{2}m\,\sin 2\theta \sin 2\alpha } \right)\,}}{{J^{2} + K^{2} }}} \right] \hfill \\ \,\,\,\,\,\,\, \hfill \\ \end{gathered} $$
(21)

where

$$ E = m^{2} - 2m\rho^{ - 2} \cos 2\theta + \rho^{ - 4} \cos 4\theta $$
(22)
$$ F = 2m\rho^{ - 2} \sin 2\theta - \rho^{ - 4} \sin 4\theta $$
(23)
$$ G = m\,\left( {\frac{{ - \sigma_{1} - \sigma_{3} }}{4} + P_{w} } \right) + \frac{{\sigma_{1} - \sigma_{3} }}{2}\,\cos 2\alpha + \frac{{ - \sigma_{1} - \sigma_{3} }}{2}\,\rho^{ - 2} \cos 2\theta $$
(24)
$$ H = \frac{{\sigma_{1} - \sigma_{3} }}{2}\,\sin 2\alpha - \frac{{ - \sigma_{1} - \sigma_{3} }}{2}\,\rho^{ - 2} \sin 2\theta $$
(25)
$$ J = m^{2} \rho^{4} \cos 4\theta - 2m\rho^{2} \cos 2\theta + 1 $$
(26)
$$ K = m^{2} \rho^{4} \sin 4\theta - 2m\rho^{2} \sin 2\theta $$
(27)
$$ L = m\rho^{4} \cos 4\theta - \left( {m^{2} + 3} \right)\rho^{2} \cos 2\theta - m $$
(28)
$$ M = m\rho^{4} \sin 4\theta - \left( {m^{2} + 3} \right)\rho^{2} \sin 2\theta $$
(29)
$$ N = m\,\left( {\frac{{ - \sigma_{1} - \sigma_{3} }}{4} + P_{w} } \right) + \frac{{\sigma_{1} - \sigma_{3} }}{2}\,\cos 2\alpha $$
(30)

where \(\alpha\) is the angle between the major axis of the ellipse and the maximum principal stress direction (Fig. 22). In this article, to find the fracture initiation pressure, only the tangential stress in the borehole wall is needed. In the borehole wall, \(\rho = 1\) and according to Fig. 22, the major axis of the ellipse is considered to be perpendicular to the maximum principal stress direction, i.e. \(\alpha = 90^\circ\); By applying these two conditions in relation 19, this relation is simplified as follows, which expresses the tangential stress in the borehole wall:

$$ \sigma_{\theta \theta } = \frac{{\left( { - \sigma_{1} - \sigma_{3} } \right)\,\left( {m^{2} - 1} \right) + 2\,\left( {\sigma_{1} - \sigma_{3} } \right)\,\left[ { - m + \cos 2\theta } \right] + 4mP_{w} \left( {m - \cos 2\theta } \right)}}{{\left( {m - \cos 2\theta } \right)^{2} + \sin^{2} 2\theta }} - P_{w} $$
(31)

This relationship can be written as follows

$$ \sigma_{\theta \theta } = A\,\sigma_{1} \, + \,B\,\sigma_{3} \, - \,C\,P_{w} $$
(32)

where

$$ A = \frac{{1 - m^{2} - 2m + 2\cos 2\theta }}{{1 + m^{2} - 2m\,\cos 2\theta }} $$
(33)
$$ B = \frac{{1 - m^{2} + 2m - 2\cos 2\theta }}{{1 + m^{2} - 2m\,\cos 2\theta }} $$
(34)
$$ C = \frac{{1 - 3m^{2} + 2m\,\cos 2\theta }}{{1 + m^{2} - 2m\,\cos 2\theta }} $$
(35)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jolfaei, S., Lakirouhani, A. Initiation Pressure and Location of Fracture Initiation in Elliptical Wellbores. Geotech Geol Eng 41, 4487–4506 (2023). https://doi.org/10.1007/s10706-023-02528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-023-02528-z

Keywords

Navigation