Skip to main content

Advertisement

Log in

Landslide Susceptibility Assessment Using Evidence Belief Function and Frequency Ratio Models in Taounate city (North of Morocco)

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The exploitation of a suitable cartography of a well-identified geographical territory inevitably passes by reliefs drawn by the movements of ground. The most frequent of these movements are landslides such as the case of the Taounate city in the mountainous area of northern Morocco. The aim of the work is to develop a landslide susceptibility map of Taounate city based on the evidence belief function (EBF) and the frequency ratio (FR) Models. The landslide inventory map was prepared using interpretation of aerial photographs, satellite images and field visits. Twelve predisposition and release factors (slope, lithology, aspect, annual precipitation, elevation, curvature, normalized difference vegetation index (NDVI), land cover, distance from rivers, and distance from roads, topographic wetness index (TWI), and surface roughness) are taken into account in this study to develop susceptibility maps. The validation of the resulting susceptibility maps was obtained by analyzing the area under the curve. The results of the validation showed that the combination of the predictive factors: terrain slope, terrain aspect, lithology, TWI and NDVI proved to be the best combination for both FR and EBF models and give values for the area under the curve equal to 98% (0.9779) and 87% (0.8712) respectively. These coefficients reflect the good degree of reliability of the models used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinci H, Dogan S, Kiligoclu C, Temiz MS (2011) Production of landslide susceptibility map of Samsun (Turkey) city centre by using frequency ration model. Int J Phys Sci 6(5):1015–1025

    Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Google Scholar 

  • Althuwaynee OF, Pradhan B, Lee S (2012) Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci 44:120–135

    Google Scholar 

  • Amiri MA, Karimi M, Sarab AA (2014) Hydrocarbon resources potential mapping using the evidential belief functions and GIS, Ahvaz/Khuzestan Province, southwest Iran. Arab J Geosci 8(6):3929–3941

    Google Scholar 

  • Avinash KG, Ashamanjari KG (2010) A GIS and frequency ratio based landslide susceptibility mapping: Aghnashini river catchment, Uttara Kannada, India. Int J Geomat Geosci 1(3):343–354

    Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81

    Google Scholar 

  • Bi R, Schleier M, Rohn J, Ehret D, Xiang W (2014) Landslide susceptibility analysis based on ArcGIS and artificial neural network for a large catchment in Three Gorges region, China. Environ Earth Sci 72(6):1925–1938

    Google Scholar 

  • Binaghi E, Luzi L, Madella P (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster–Shafer approaches. Nat Hazards 17:77–97

    Google Scholar 

  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2011) Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro fuzzy inference system and GIS. Comp Geosci. https://doi.org/10.1016/j.cageo.2011.10.031

    Article  Google Scholar 

  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171–172:12–29

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445

    Google Scholar 

  • Chacon J, Irigaray C, Fernandez T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411

    Google Scholar 

  • Cheng S, Yang G, Yu H, Li J, Zhang L (2012) Impacts of Wenchuan earthquake- induced landslides on soil physical properties and tree growth. Ecol Indic 15:263–270

    Google Scholar 

  • Chung C-JF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 65:451–472

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation research board, Special report 247. National Academy Press, Washington, pp 36–75

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Landf 28:527–545

    Google Scholar 

  • Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38:325–339

    Google Scholar 

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51:241–256

    Google Scholar 

  • El Kharim Y (2002) Etude des mouvements de versants dans ta région de Tétouan (Rif occidental): inventaire, analyse et cartographie. Thèse Dr es Sci Univ Abdelmalek Essaadi, Tétouan

  • Fares A (1994) Essai Méthodologique de La Cartographie Des Risques Naturels Liés Aux Mouvements de Terrain. Application À L’aménagement de La Ville de Taounate (Rif, Maroc). Thèse Doctorat, Université de Franche Comté: 177

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Google Scholar 

  • Ghosh S, Carranza EJM (2010) Spatial analysis of mutual fault/fracture and slope controls on rocksliding in Darjeeling Himalaya, India. Geomorphology 122:1–24

    Google Scholar 

  • Guillard C (2009) Evaluation et cartographie du risque glissement de terrain d’une zone située au nord de Lisbonne. Mémoire du Master «système territoriaux, développement durable et aide à la décision» Ecole nationale supérieure des mines Saint-Etienne

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of cur- rent techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic landslide hazard analyses. Eng Geol 122:9–21

    Google Scholar 

  • Hutchinson JN (1988) Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Landslides. Proceedings 5th international conference on landslides, vol 1. Lausanne, pp 3–35

  • Jia Y, Yu G, He N et al (2014) Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci Rep 4:3763

    Google Scholar 

  • Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol 76:109–128

    Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazard and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115(6):661–672

    Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Dammrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50:846–855

    Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990

    Google Scholar 

  • Lee S, Choi J, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens 25(11):2037–2052

    Google Scholar 

  • Lee CT, Huang CC, Lee JF, Pan KL, Lin ML, Dong JJ (2008) Statistical approach to earthquake-induced landslide susceptibility. Eng Geol 100:43–58

    Google Scholar 

  • Luzi L, Pergalani F, Terlien MTJ (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58:313–336

    Google Scholar 

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435. https://doi.org/10.1007/s11069-008-9230-x

    Article  Google Scholar 

  • Malet J-P, Thiery Y, Maquaire O, Puissant A (2006) Analyse spatiale, évaluation et cartographie du risque ‘glissement de terrain’. Revue Internationale de Géomatique

  • Maquaire O, Thiery Y, Malet J-P, Puissant A (2006) Evaluation et Cartographie Par SIG Du Risque ‘glissement de Terrain’. Application Aux Alpes Du Sud. Interactions Nature-Société, pp 1–5

  • Margaa K (1994) Essai de cartographie des risques naturels: application à l’aménagement de la région d’Al Hoceima (Rif, Nord-Maroc). Thèse Doctorat, Université de Franche-Comté, p 196

  • MEMEE Ministère de l’Energie, des Mines, de l’Eau et de l’Environnement (2008) Etude pour la réalisation d’une cartographie et d’un système d’information géographique sur les risques majeurs au Maroc: Les glissements de terrain. Rapport technique, p 49

  • Metz CE (1978) Basic principles of ROC analysis. In: Seminars in nuclear medicine, vol 8, no 4. Elsevier, pp 283–298

  • Millies-Lacroix (1968) les glissements de terrains. Présentation d’une carte prévisionnelle des le domaine de masse dans le rif (Maroc Septentrional): Mines et géologie, n°27, pp 45–55

  • Millies-Lacroix A (1981) Classification des talus et versants instables. Bull Liason Labo Ponts et Chaussées, Spécial X

  • Moon WM (1989) Integration of remote sensing and geophysical/geological data using dempster Shafer approach. Geoscience and remote sensing symposium, 1989. Igarss’89. Canadian Symposium on Remote Sensing. 1989 International. IEEE Xplore, pp 838–841

  • Nampak H, Pradhan B, Manap MA (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300

    Google Scholar 

  • Neuhauser B, Damm B, Terhorst B (2012) GIS-based assessment of landslide susceptibility on the base of the weights-of evidence model. Landslides 9:511–528

    Google Scholar 

  • Pandav C, Sachin KC, Kiran MJ, Basanta MS, Prabin K (2016) Application of an Analytic Hierarchy Process (AHP) in the GIS interface for suitable fire site selection: a case study from Kathmandu Metropolitan City, Nepal. Soc Econ Plan Sci 53:60–71

    Google Scholar 

  • Park NW (2010) Application of Dempster–Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environ Earth Sci 62(2):367–376

    Google Scholar 

  • Park I, Kim Y, Lee S (2014) Groundwater productivity potential mapping using evidential belief function. Ground Water 52(S1):201–207

    Google Scholar 

  • Qingfeng D, Wei C, Haoyuan H (2016) Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int. https://doi.org/10.1080/10106049.2016.1165294

    Article  Google Scholar 

  • Rouse JW, Haas RH, Deering DW, Schell JA, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (Green Wave Effect) of natural vegetation. NASA/GSFC Type III Final Report, Greenbelt

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides 2:61–69

    Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton, p 297

    Google Scholar 

  • Shahabi H, Ahmad B, Khezri S (2013) Evaluation and comparison of bivariate and multivariate statistical methods for landslide susceptibility mapping (case study: Zab basin). Arab J Geosci 6:3885–3907

    Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster R (eds) Landslides investigation and mitigation. Transportation research board special report, vol 247. National Academy Press, Washington

  • Sujatha ER, Rajamanickam V (2011) Landslide susceptibility mapping of Tevankarai Ar Sub-Watershed, Kodaikkanal Taluk, India, using weighted similar choice fuzzy model. Nat Hazards 59:401–425

    Google Scholar 

  • Sujatha ER, Rajamanickam GV, Kumaravel P (2012) Landslide susceptibility analysis using probabilistic certainty factor approach: a case study on Tevankarai stream watershed, India. J Earth Syst Sci 121(5):1337–1350

    Google Scholar 

  • Suter G (1967) Carte géologique de Taounate-Aïn Aïcha à 1/50 000. Not. et Mém. du Serv. GéoI. Maroc, 186 bis

  • Tangestani MH (2009) A comparative study of Dempster–Shafer and fuzzy models for landslide susceptibility mapping using a GIS: an experience from Zagros Mountains, SW Iran. Asian J Earth Sci 35:66–73

    Google Scholar 

  • Thiery Y, Sterlacchini S, Malet A, Olivier P (2004) Modélisation Spatiale de La Susceptibilité Des Versants Aux Mouvements de Terrain Stratégie et Application D’ Une Analyse Bivariée Par SIG. Cassini-Sigma Géomatique(Juin 2004), p 12

  • Thiery Y, Malet J-P, Sterlacchini S, Puissant A, Maquaire O (2005) Analyse spatiale de la susceptibilité des versants aux mouvements de terrain, comparaison de deux approches spatialisées par SIG. Eur J GIS Spat Anal 15:227–245

    Google Scholar 

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59

    Google Scholar 

  • Vakhshoori V, Zare M (2016) Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomat Nat Hazards Risk 7(5):1731–1752

    Google Scholar 

  • Van den Eeckhaut M, Poesen J, Verstraeten G et al (2005) The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 67(3–4):351–363

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides analysis and control. National Research Council, Washington, DC, Transportation Research Board, special report 176, pp 11–33

  • Xu C, Xu X, Dai F, Xiao J, Tan X, Yuan R (2012) Landslide hazard mapping using GIS and weight of evidence model in Qingshui River watershed of 2008 Wenchuan Wenchuan earthquake struck region. J Earth Sci 23:97–120

    Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72:1–12

    Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and Support Vector Machine. Environ Earth Sci 61(4):821–836

    Google Scholar 

  • Yilmaz C, Topal T, Suzen ML (2012) GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak Turkey). Environ Earth Sci 65(7):2161–2178

    Google Scholar 

  • Youssef AM, Al-Kathery M, Pradhan B, El-Sahly T (2014) Debris flow impact assessment along the Al-Raith Road, King- dom of Saudi Arabia, using remote sensing data and field inves- tigations. Geomatics, Natural Hazards and Risk (ahead-of-print), pp 1–19

  • Youssef AM, Pradhan B, Al-Kathery M, Bathrellos GD, Skilodimou HD (2015) Assessment of rockfall hazard at Al-Noor Mountain, Makkah City (Saudi Arabia) using spatio-temporal remote sensing data and field investigations. J Afr Earth Sci 101:309–321

    Google Scholar 

  • Zezere JL, Reis E, Garcia R, Oliveira S, Rodrigues ML, Vieira G, Ferreira AB (2004) Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 4:133–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelfattah Abidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abidi, A., Demehati, A. & El Qandil, M. Landslide Susceptibility Assessment Using Evidence Belief Function and Frequency Ratio Models in Taounate city (North of Morocco). Geotech Geol Eng 37, 5457–5471 (2019). https://doi.org/10.1007/s10706-019-00992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-019-00992-0

Keywords

Navigation