Skip to main content
Log in

Enhanced Engineering Characteristics of Soils by Electro-Osmotic Treatment: An Overview

  • State-of-the-Art Review
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The electro-osmotic treatment for stabilizing fine-grained soils is gaining importance in the field of geotechnical engineering. There is absolute evidence that during the electro-osmotic treatment, the basic index, physicochemical and engineering properties of the soils was found to be modified. A review of the enhanced engineering characteristics of soils due to electro-osmotic treatment is presented in this paper. In addition, a brief description of the critical factors that affect the efficiency of electro-osmotic treatment is presented. This review intends to summarize the results obtained from the several field-based case studies and laboratory-based experimental studies to understand the variation in the water content, Atterberg limits, permeability, seepage, consolidation, shear strength, mineralogical and physicochemical characteristics of the soil due to electro-osmotic treatment. Based on the review, it can be inferred that usage of electro-osmotic treatment for stabilizing the fine-grained soils is beneficial, and its higher efficiency can be obtained by selecting suitable electrodes and devising the scheme appropriately for the polarity reversal and current intermittences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Area

E :

Electrical field intensity or voltage gradient

E o :

The standard electrode potential

E c :

Energy consumed

EO :

Electro-osmosis

EO t :

Electro-osmotic treatment

EVDs :

Electrical vertical drains

EKGs :

Electrokinetic geosynthetics

I :

Current

k :

Electrical conductivity of the soil

k e :

The coefficient of electro-osmotic permeability

k h :

Coefficient of hydraulic permeability

l :

Length between the electrodes

n :

Porosity of the soil

P j :

Type of gradient

p :

Unit power consumption

PRW C :

Percentage reduction in water content

t :

Total time

v :

Sample volume

USSI :

Undrained shear strength increment

V :

Mean applied voltage

T j :

Type of flow

Q :

Discharge

α ij :

Coupling coefficient

ρ :

Electrical resistance

εw :

Permittivity of the water

ζ :

Zeta potential of the soil

μ :

Viscosity of the pore fluid

γw :

Unit weight of water

Δσ′:

Effective stress increment

References

  • Abiera HO, Miura N, Bergado DT (1998) Response of Ariake clay to electro-osmotic consolidation using electro-conductive PVD. Improvement of soft ground; design analysis and current research. ACSIG, Bangkok, pp 59–73

    Google Scholar 

  • Abiera HO, Miura N, Bergado DT, Nomura T (1999) Effects of using electro-conductive PVD in the consolidation of reconstituted Ariake clay. Geotech Eng 30(2):67–83

    Google Scholar 

  • Acar YB, Hamed JT, Alshawabkeh AN, Gale RJ (1994) Removal of cadmium(II) from saturated kaolinite application of electrical current. Geotechnique 44(2):355–359

    Article  Google Scholar 

  • Adamson LG, Chilingar GV, Beeson CM, Armstrong RA (1966a) Electrokinetic dewatering, consolidation and stabilization of soils. Eng Geol 1(4):291–304

    Article  Google Scholar 

  • Adamson LG, Quigley DW, Ainsworth HR, Chilingar GV (1966b) Electrochemical strengthening of clayey sandy soils. Eng Geol 1(6):451–459

    Article  Google Scholar 

  • Alder D, Jones CJFP, Lamont-Black et al (2015) Design principles and construction insight regarding the use of electrokinetic techniques for slope stabilisation. In: Proceedings of the XVI ECSMGE geotechnical engineering for infrastructure and development. Edinburgh, Scotland, pp 1531–1536

  • Alshawabkeh AN, Acar YB (1996) Electrokinetic remediation II: theoretical model. J Geotech Eng 122(3):186–196

    Article  Google Scholar 

  • Arnold M (1973) Laboratory determination of the coefficient of electro-osmotic permeability of a soil. Géotechnique 23(4):581–588

    Article  Google Scholar 

  • Badv K, Mohammadzadeh K (2015) Laboratory assessment of the electro-osmotic consolidation technique for Urmia lake sediments. IJST-T Civ Eng 39(C2):485–496

    Google Scholar 

  • Bareither CA, Edil TB, Benson CH, Mickelson DM (2008) Geological and physical factors affecting the friction angle of compacted sands. J Geotech Geoenviron Eng 134:1476–1489

    Article  Google Scholar 

  • Barker JE, Rogers CDF, Boardman DI, Peterson J (2004) Electrokinetic stabilisation: an overview and case study. Proc Inst Civ Eng Ground Improv 8(2):47–58

    Article  Google Scholar 

  • Bergado DT, Sasanakul I, Horpibulsuk S (2003) Electro-osmotic consolidation of soft Bangkok clay using copper and carbon electrodes with PVD. Geotech Test J 26(3):277–288

    Google Scholar 

  • Bjerrum L, Moum J, Eide O (1967) Application of electro-osmosis to a foundation problem in a Norwegian quick clay. Géotechnique 17(3):214–235

    Article  Google Scholar 

  • Bourgès-Gastaud S, Stoltz G, Dolez P et al (2015) Laboratory device to characterize electrokinetic geocomposites for fluid fine tailings dewatering. Can Geotech J 52(4):505–514

    Article  Google Scholar 

  • Bozozuk M, Labrecque A (1969) Downdrag measurements on 270-Ft composite piles. Performance of Deep Foundations, ASTM STP 444, ASTM, pp 15–40

  • Buehler MF, Surma JE, Virden JW (1994) In situ soil remediation using electrokinetics. Presented at the 33rd Hanford symposium on health and the environmental conference, Washington, USA, pp 1–36

  • Burnotte F, Lefebvre G, Grondin G (2004) A case record of electroosmotic consolidation of soft clay with improved soil–electrode contact. Can Geotech J 41(6):1038–1053

    Article  Google Scholar 

  • Butterfield R, Johnston IW (1980) The influence of electro-osmosis on metallic piles in clay. Geotechnique 30(1):17–38

    Article  Google Scholar 

  • Cabrera-Guzmán D, Swartzbaugh JT, Weisman AW (1990) The use of electrokinetics for hazardous waste site remediation. J Air Waste Manag Assoc 40:1670–1676

    Article  Google Scholar 

  • Calabria CR (2005) The electro-osmotic potential regarding pre-fabricated vertical drains. In: Geosynthetics research and development, GRI-18, ASCE, pp 1–6

  • Cameselle C, Gouveia S (2018) Electrokinetic remediation for the removal of organic contaminants in soils. Curr Opin Electrochem 11:41–47. https://doi.org/10.1016/j.coelec.2018.07.005

    Article  Google Scholar 

  • Casagrande L (1949) Electro-osmosis in soils. Geotechnique 1(3):159–177

    Article  Google Scholar 

  • Casagrande L (1983) Stabilization of soils by means of electro-osmosis- state of the art. J Boston Soc Civ Eng Sect ASCE 69(2):255–302

    Google Scholar 

  • Chew SH, Karunaratne GP, Kuma GP et al (2004) A field trial for soft clay consolidation using electric vertical drains. Geotext Geomembr 22:17–35

    Article  Google Scholar 

  • Chien S, Ou C, Wang M (2009) Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil. Appl Clay Sci 44:218–224

    Article  Google Scholar 

  • Choobbasti AJ, Zahmatkesh A, Noorzad R (2011) Performance of stone columns in soft clay: numerical evaluation. Geotech Geol Eng 29:675–684. https://doi.org/10.1007/s10706-011-9409-x

    Article  Google Scholar 

  • Darmawan, Wada SI (2002) Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology. Appl Clay Sci 20:283–293

    Article  Google Scholar 

  • Elias V, Welsh J, Warren J, Lukas R (1998) Ground improvement technical summaries vol 1. Publication No. FHWA-SA-98-086

  • Esrig MI (1968) Pore pressure, consolidation and electrokinetics. J Soil Mech Found Div ASCE 94(4):899–921

    Google Scholar 

  • Estabragh AR, Naseh M, Javadi AA (2014) Improvement of clay by electro-osmosis technique. Appl Clay Sci 95:32–36

    Article  Google Scholar 

  • Eykholt GR, Daniel DE (1994) Impact of system chemistry on electroosmosis in contaminated soil. J Geotech Eng 120(5):797–815

    Article  Google Scholar 

  • Fei-yu L, Wei M, Le Z, Jun W (2014) Experimental study of the electro-osmosis consolidation of soft clay under anode follow-up. Proc Ground Improv Geosynth GSP 238:188–197

    Google Scholar 

  • Fetzer CA (1967) Electro-osmotic stabilization of west branch dam. J Soil Mech Found Div ASCE 93(4):85–106

    Google Scholar 

  • Fourie AB, Jones CJFP (2010) Improved estimates of power consumption during dewatering of mine tailings using electrokinetic geosynthetics(EKGs). Geotext Geomembr 28:181–190

    Article  Google Scholar 

  • Fourie AB, Johns DG, Jones CJFP (2007) Dewatering of mine tailings using electrokinetic geosynthetics. Can Geotech J 172(44):160–172

    Article  Google Scholar 

  • Fu H, Wang J, Wang P (2017) Experimental study on the combined application of vacuum preloading—variable-spacing electro-osmosis to soft ground improvement. Geosynth Int 24(1):72–81

    Article  Google Scholar 

  • Gill RT, Harbottle MJ, Smith JWN, Thornton SF (2014) Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere 107:31–42

    Article  Google Scholar 

  • Gingine V, Cardoso R (2017) Secondary consolidation of a consolidated kaolin slurry during electrokinetic treatment. Eng Geol 220:31–42. https://doi.org/10.1016/j.enggeo.2017.01.024

    Article  Google Scholar 

  • Glendinning S, Lamont-Black J, Jones CJFP (2007) Treatment of sewage sludge using electrokinetic geosynthetics. J Hazard Mater 139(3):491–499

    Article  Google Scholar 

  • Glendinning S, Lamont-Black J, Jones CJFP, Hall J (2008) Treatment of lagooned sewage sludge in situ using electrokinetic geosynthetics. Geosynth Int 15(3):192–204

    Article  Google Scholar 

  • Gray DH (1970) Electrochemical hardening of clay soils. Géotechnique 20(1):81–93

    Article  Google Scholar 

  • Gray DH, Mitchell JK (1967) Fundamental aspects of electro-osmosis in soils. J Soil Mech Found Div ASCE 93(6):209–236

    Google Scholar 

  • Gwede D (2000) Electrokinetic techniques for improving soft and volume active clays. In: Proceedings of the 6th young geotechnical engineering symposium, pp 53–54

  • Hamir RB, Jones CJFP, Clarke BG (2000) Electrically conductive geosynthetics for consolidation and reinforced soil. Geotext Geomembr 19(8):455–482

    Article  Google Scholar 

  • Han J (2015) Principles and practice of ground improvement. Wiley, Hoboken

    Google Scholar 

  • Hansbo S (2008) Soil improvement by means of electro-osmosis. In: Proceedings of the 6th international conference on case histories in geotechnical engineering, Arlington, VA, pp 1–14

  • Harton JH, Hamid S, Abi-Chedid E, Chilingar GV (1967) Effects of electrochemical treatment on selected physical properties of a clayey silt. Eng Geol 2(3):191–196

    Article  Google Scholar 

  • Hassine ABEN et al (2016) Kaolinite carbonate mixture fabric evolution after electrokinetic tests. Géotech Lett 6:1–5

    Article  Google Scholar 

  • Hausmann MR (1990) Engineering principles of ground modification. McGraw-Hill, New York

    Google Scholar 

  • Helmholtz HLF (1879) Studies of electric boundary layers. Wied Ann 7:337–382

    Article  Google Scholar 

  • Ho KS (1990) Electrical strengthening of soft sensitive clays. Dissertation, University of Ontario, Ontario

  • Hu L, Wu H, Ren Y, Wen Q (2016) Experimental study on soft soils improved by deep electro-osmotic consolidation technique. Geotechnical Special Publication 273 ASCE, pp 235–243

  • Indraratna B, Redana IW (1997) Plane-strain modeling of smear effects associated with vertical drains. J Geotech Geoenviron Eng 123(5):474–478

    Article  Google Scholar 

  • Jayasekera S (2015) Electrokinetics to modify strength characteristics of soft clayey soils: a laboratory based investigation. Electrochim Acta 181:39–47

    Article  Google Scholar 

  • Jeyakanthan V, Gnanendran CT (2013) Elastoplastic numerical approach for predicting the electro-osmotic consolidation behaviour of soft clays. Can Geotech J 50(12):1219–1235

    Article  Google Scholar 

  • Jeyakanthan V, Gnanendran CT, Lo SCR (2011) Laboratory assessment of electro-osmotic stabilization of soft clay. Can Geotech J 48(12):1788–1802

    Article  Google Scholar 

  • Jones CJFP et al (2008) Recent research and application in the use of electro-kinetic geosynthetics. In: Proceedings of the 4th European geosynthetics conference, Scotland, UK, pp 1–30

  • Jones CJFP, Lamont-Black J, Glendinning S, White C, Alder D (2014) The environmental sustainability of electrokinetic geosynthetic strengthened slopes. Proc Inst Civ Eng-Eng Sustain 167(3):95–107

    Google Scholar 

  • Jones CJFP, Lamont-Black J, Glendinning S (2011) Electrokinetic geosynthetics in hydraulic applications. Geotext Geomembr 29:381–390

    Article  Google Scholar 

  • Kaniraj SR, Yee JHS (2011) Electro-osmotic consolidation experiments on an organic soil. Geotech Geol Eng 29(4):505–518

    Article  Google Scholar 

  • Kaniraj SR, Huong HL, Yee JHS (2011) Electro-osmotic consolidation studies on peat and clayey silt using electric vertical drain. Geotech Geol Eng 29(3):277–295

    Article  Google Scholar 

  • Karunaratne GP (2011) Prefabricated and electrical vertical drains for consolidation of soft clay. Geotext Geomembr 29(4):391–401

    Article  Google Scholar 

  • Lageman R, Clarke RL, Pool W (2005) Electro-reclamation, a versatile soil remediation solution. Eng Geol 77:191–201. https://doi.org/10.1016/j.enggeo.2004.07.010

    Article  Google Scholar 

  • Lamont-Black J, Jones CJFP, Alder D (2016) Electrokinetic strengthening of slopes—case history. Geotext Geomembr 44(3):319–331

    Article  Google Scholar 

  • Laursen S (1997) Laboratory investigation of electroosmosis in bentonites and natural clays. Can Geotech J 34:664–671

    Article  Google Scholar 

  • Lee JK, Shang JQ, Xu Y (2016) Electrokinetic dewatering of mine tailings using DSA electrodes. Int J Electrochem Sci 11:4149–4160

    Google Scholar 

  • Lefebvre G, Burnotte F (2002) Improvements of electroosmotic consolidation of soft clays by minimizing power loss at electrodes. Can Geotech J 39(2):399–408

    Article  Google Scholar 

  • Li Z, Xue Q, Katsumi T, Inui T (2014) Electric–hydraulic–chemical coupled modeling of solute transport through land fill clay liners. Appl Clay Sci 101:541–552

    Article  Google Scholar 

  • Li H, Li B, Zhang Z et al (2018) Ecotoxicology and environmental safety evolution of microbial communities during electrokinetic treatment of antibiotic-polluted soil. Ecotoxicol Environ Saf 148:842–850. https://doi.org/10.1016/j.ecoenv.2017.11.057

    Article  Google Scholar 

  • Liu Z, Yang J, Li Q (2016) Soil improvement by electro-osmosis with vacuum drainage in cathode. Electron J Geotech Eng 21(15):1–13

    Google Scholar 

  • Lo KY, Ho KS, Inculet I (1991a) Field test of electroosmotic strengthening of soft sensitive clay. Can Geotech J 28(1):74–83

    Article  Google Scholar 

  • Lo KY, Inculet I, Ho KS (1991b) Electroosmotic strengthening of soft sensitive clays. Can Geotech J 28(1):62–73

    Article  Google Scholar 

  • Lykelma J (1995) Fundamentals of interface and colloid science, vol II. Elsevier, Amsterdam

    Google Scholar 

  • Mahmoud A, Olivier J, Vaxelarie J, Hoadley AFA (2010) Electrical field : a historical review of its application and contributions in wastewater sludge dewatering. Water Res 44:2381–2407

    Article  Google Scholar 

  • Malekzadeh M, Sivakugan N (2017) Double drain electrokinetic stabilization of dredged mud using stainless steel electrodes and application of surcharge. KSCE J Civ Eng 21:2615–2621. https://doi.org/10.1007/s12205-017-0975-1

    Article  Google Scholar 

  • Malekzadeh M, Lovisa J, Sivakugan N (2016) An overview of electrokinetic consolidation of soils. Geotech Geol Eng 34(3):759–776

    Article  Google Scholar 

  • Masi M, Ceccarini A, Iannelli R (2017) Model-based optimization of field-scale electrokinetic treatment of dredged sediments. Chem Eng J 328:87–97. https://doi.org/10.1016/j.cej.2017.07.004

    Article  Google Scholar 

  • Micic S, Shang JQ, Lo KY et al (2001) Electrokinetic strengthening of a marine sediment using intermittent current. Can Geotech J 38(2):287–302

    Article  Google Scholar 

  • Milligan V (1995) First application of electro-osmosis to improve friction pile capacity-three decade later. Proc Inst Civ Eng-Geotech Eng 113:112–116

    Article  Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamental of soil behaviour. Wiley, New York

    Google Scholar 

  • Mohamedelhassan E (2009) Electrokinetic strengthening of soft clay. Proc Inst Civ Eng Ground Improv 162(GI4):157–166

    Article  Google Scholar 

  • Mohamedelhassan E, Shang JQ (2001) Effects of electrode materials and current intermittence in electro-osmosis. Proc Inst Civ Eng Ground Improv 5:3–11

    Article  Google Scholar 

  • Mohamedelhassan E, Shang JQ (2002) Feasibility assessment of electro-osmotic consolidation on marine sediment. Proc Inst Civ Eng Ground Improv 6(4):145–152

    Article  Google Scholar 

  • Morris DV, Hillis SF, Caldwell JA (1985) Improvement of sensitive silty clay by electroosmosis. Can Geotech J 22(1):17–24

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. https://doi.org/10.1016/S0013-7952(00)00101-0

    Article  Google Scholar 

  • Munfakh GA (1997) Ground improvement engineering—the state of the US practice: part 1: Methods. Proc Inst Civ Eng Ground Improv 1(4):193–214

    Article  Google Scholar 

  • Najjar SS (2013) A state-of-the-art review of stone/sand-column reinforced clay systems. Geotech Geol Eng 31:355–386. https://doi.org/10.1007/s10706-012-9603-5

    Article  Google Scholar 

  • Nizar KNM, Clarke BG (2014) Electro-osmotic piles. Proc Inst Civ Eng Ground Improv 167(G12):135–144

    Article  Google Scholar 

  • Ortiz-soto R, Hansen HK, Leal D et al (2019) Electrokinetic remediation of manganese and zinc in copper mine tailings. J Hazard Mater 365:905–911. https://doi.org/10.1016/j.jhazmat.2018.11.048

    Article  Google Scholar 

  • Otsuki N, Yodsudjai W, Nishida T (2007) Feasibility study on soil improvement using electrochemical technique. Constr Buil Mater 21:1046–1051

    Article  Google Scholar 

  • Pedersen KB, Jensen PE, Ottosen LM, Barlindhaug J (2018) The relative influence of electrokinetic remediation design on the removal of As, Cu, Pb and Sb from shooting range soils. Eng Geol 238:52–61. https://doi.org/10.1016/j.enggeo.2018.03.005

    Article  Google Scholar 

  • Rajesh S (2017) Time-dependent behaviour of fully and partially penetrated geosynthetic encased stone columns. Geosynth Int 24(1):60–71

    Article  Google Scholar 

  • Rajesh S, Jain P (2015) Influence of permeability of soft clay on the efficiency of stone columns and geosynthetic encased stone columns-a numerical study. Int J Geotech Eng 9(5):483–493

    Article  Google Scholar 

  • Reddi LN, Ming X, Hajara MG, Lee IM (2000) Permeability reduction of soil filters due to physical clogging. J Geotech Geoenviron Eng 126(3):236–246

    Article  Google Scholar 

  • Reddy KR, Ala PR, Sharma S, Kumar SN (2006) Enhanced electrokinetic remediation of contaminated manufactured gas plant soil. Eng Geol 85:132–146. https://doi.org/10.1016/j.enggeo.2005.09.043

    Article  Google Scholar 

  • Rezaee M, Asadollahfardi G, Gomez-lahoz C et al (2019) Modeling of electrokinetic remediation of Cd- and Pb-contaminated kaolinite. J Hazard Mater 366:630–635. https://doi.org/10.1016/j.jhazmat.2018.12.034

    Article  Google Scholar 

  • Rittirong A, Douglas RS, Shang JQ, Lee EC (2008) Electrokinetic improvement of soft clay using electrical vertical drains. Geosynth Int 15(5):369–381

    Article  Google Scholar 

  • Shang JQ (1997) Zeta potential and electroosmotic permeability of clay soils. Can Geotech J 34(4):627–631

    Article  Google Scholar 

  • Shang JQ (1998) Electroosmosis-enhanced preloading consolidation via vertical drains. Can Geotech J 35(3):491–499

    Article  Google Scholar 

  • Shang JQ (2012) Electrokinetics: engineering applications and recent development. Geotech SP 217:1–8

    Google Scholar 

  • Shivashankar R, Babu MRD, Nayak S, Rajathkumar V (2011) Experimental studies on behaviour of stone columns in layered soils. Geotech Geol Eng 29:749–757. https://doi.org/10.1007/s10706-011-9414-0

    Article  Google Scholar 

  • Smoluchowski M (1921) Elektrische endosmose und strö-mungsströme. Handbuch der Elektrizität und des Magnetismus 2:366–428

    Google Scholar 

  • Tajudin SAA (2012) Electrokinetic stabilization of soft clay. Dissertation, University of Birmingham, Birmingham

  • Vangla P, Madhavi G (2015) Influence of particle size on the friction and interfacial shear strength of sands of similar morphology. Int J Geosynth Ground Eng 1:1–12. https://doi.org/10.1007/s40891-014-0008-9

    Article  Google Scholar 

  • Wade MH (1976) Slope stability by electro-osmosis. In: Proceedings of the 29th Canadian geotechnical conference, Vancouver, pp 44–66

  • Wang J, Zhao R, Cai Y, Fu H, Li X, Hu X (2018) Vacuum preloading and electro-osmosis consolidation of dredged slurry pre-treated with flocculants. Eng Geol 246:123–130. https://doi.org/10.1016/j.enggeo.2018.09.024

    Article  Google Scholar 

  • Win B, Choa V, Zeng X (2001) Laboratory investigation on electro-osmosis properties of Singapore marine clay. Soils Found 41(5):15–23

    Article  Google Scholar 

  • Wu H, Hu L, Zhang G (2016) Effects of electro-osmosis on the physical and chemical properties of bentonite. J Mater Civ Eng 28(8):6016010

    Article  Google Scholar 

  • Xue Z, Tang X, Yang Q (2017) Influence of voltage and temperature on electro-osmosis experiments applied on marine clay. Appl Clay Sci 141:13–22. https://doi.org/10.1016/j.clay.2017.01.033

    Article  Google Scholar 

  • Yazdanbod A (2014) Capacitive electrokinetic dewatering of suspensions and soils. United State Patent WO2014078390A1

  • Yong RN, Warkentin BP (1975) Soil properties and behaviour. Elsevier, Amsterdam

    Google Scholar 

  • Zhang L, Wang NW, Jing LP et al (2017) Electro-osmotic chemical treatment for marine clayey soils: a laboratory experiment and a field study. Geotech Test J 40(1):72–83

    Article  Google Scholar 

  • Zhou J, Tao YL, Xu CJ et al (2015) Electro-osmotic strengthening of silts based on selected electrode materials. Soils Found 55(5):1171–1180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, B.K., Rajesh, S. Enhanced Engineering Characteristics of Soils by Electro-Osmotic Treatment: An Overview. Geotech Geol Eng 37, 4649–4673 (2019). https://doi.org/10.1007/s10706-019-00973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-019-00973-3

Keywords

Navigation