Skip to main content
Log in

Analytical Solution to Study Depletion/Injection Rate on Induced Wellbore Stresses in an Anisotropic Stress Field

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

During production or injection, the state of stresses within the reservoir as well as around the wellbore changes. It is therefore important to evaluate the impact of the induced stresses on stability of wellbores. This study proposes an analytical solution to estimate the influence of production or injection rate on stresses around a wellbore in an anisotropic stress field. For considering the effect of production/injection rate, pseudo steady state flow was assumed within the reservoir that occurs more frequently than transient or steady state flow in a reservoir with an expanding drainage radius. Until now stress equations have not been developed in which the effect of production/injection rate being included. The results showed that the impact of the depletion and injection rate on induced stresses around the wellbore is significant and should be considered in the geomechanical analysis especially in low permeability reservoirs. Application of the proposed solution on a typical sandstone reservoir showed that in relatively high production rate, the radial and tangential stresses near wellbore decrease whereas the vertical and pore pressure increase. An opposite trend was observed for the effect of injection rate on near wellbore stresses. This results are consistent with field observation and means that in rapid production, the vertical stress will increase and horizontal stresses will decrease leading to surface subsidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abousleiman Y, Cui L (1998) Poroelastic solutions in transversely isotropic media for wellbore and cylinder. Int J Solids Struct 35(34–35):4905–4929. https://doi.org/10.1016/S0020-7683(98)00101-2

    Article  Google Scholar 

  • Ahmed T et al (2006) Reservoir engineering handbook. Gulf Professional Publishing, Houston

    Google Scholar 

  • Al-Shaaibi SK, Al-Ajmi AM, Al-Wahaibi Y (2013) Three dimensional modeling for predicting sand production. J Petrol Sci Eng 109:348–363. https://doi.org/10.1016/j.petrol.2013.04.015

    Article  Google Scholar 

  • Aminian K, Ameri S, Hyman MD et al (1986) Production decline type curves for gas wells producing under pseudo-steady-state conditions. In: SPE Eastern Regional Meeting

  • Bradley WB (1979) Failure of inclined boreholes. J Energy Res Technol 101(4):232. https://doi.org/10.1115/1.3446925

    Article  Google Scholar 

  • Chen SL, Abousleiman YN (2016) Stress analysis of borehole subjected to fluid injection in transversely isotropic poroelastic medium. Mech Res Commun 73:63–75. https://doi.org/10.1016/j.mechrescom.2016.02.003

    Article  Google Scholar 

  • Cheng AH-D, Detournay E, Abousleiman Y (2016) Poroelasticity, vol 27. Springer, Berlin

    Google Scholar 

  • Complex Reservoir in South of Iran (2011) Pedec. www.pedec.ir/detail=786

  • Cui L, Abousleiman Y, Cheng AHD, Roegiers JC (1999) Time-dependent failure analysis of inclined boreholes in fluid-saturated formations. J Energy Res Technol 121(1):31–39. https://doi.org/10.1016/j.petrol.2006.04.021

    Article  Google Scholar 

  • Das BM (2013) Advanced soil mechanics. CRC Press, Boca Raton

    Google Scholar 

  • Detournay E, Cheng AH-D (1988) Poroelastic response of a borehole in a non-hydrostatic stress field. Int J Rock Mech Min Sci Geomech Abstr 25(3):171–182. https://doi.org/10.1016/0148-9062(88)92299-1

    Article  Google Scholar 

  • Fjar E, Holt RM, Raaen AM, Risnes R, Horsrud P (2008) Petroleum related rock mechanics, vol 53. Elsevier, Amsterdam

    Google Scholar 

  • Freij-Ayoub R, Tan CP, Choi SK et al (2003) SPE/IADC 85344 simulation of time-dependent wellbore stability in shales using a coupled mechanical–thermal–physico-chemical model. In: SPE/IADC middle east drilling technology conference and exhibition

  • Heidarian M, Jalalifar H, Schaffie M, Jafari S et al (2014) New analytical model for predicting the unstable zone around the borehole. SPE Journal 19(6):1–177

    Article  Google Scholar 

  • Kundu S, Kundu P (n.d.) A review on elasticity and poroelasticity theory for various media. 3(3):584–586

  • Li P, Wang K, Li X, Lu D (2014) Analytical solutions of a Fi Nite two-dimensional Fl Uid-saturated poroelastic medium with compressible constituents, pp 1183–1196. https://doi.org/10.1002/nag

  • Li P, Wang K, Lu D (2015) Analytical solution of plane-strain poroelasticity due to surface loading within a finite rectangular domain. no. 2014, pp 1–8. https://doi.org/10.1061/(asce)gm.1943-5622.0000776

  • Li P, Wang K, Lu D (2016) Analysis of time-dependent behavior of coupled flow and deformation due to a point sink within a finite rectangular fluid-saturated poroelastic medium. J Porous Media 19(11):955–973

    Article  Google Scholar 

  • Mohiuddin M, Khan K, Abdulraheem A, Al-Majed A, Awal MR (2007) Analysis of wellbore instability in vertical, directional, and horizontal wells using field data. J Petrol Sci Eng 55(1–2):83–92. https://doi.org/10.1016/j.petrol.2006.04.021

    Article  Google Scholar 

  • Olson JE, Srinivasan S (2005) The impact of shale properties on wellbore stability. Citeseer

  • Osisanya SO (2011) Practical approach to solving wellbore instability problems. SPE Distinguished Lecturer Program

  • Rice James R, Cleary Michael P (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14(2):227–241

    Article  Google Scholar 

  • Roshan Hamid, Rahman SS (2011) Analysis of pore pressure and stress distribution around a wellbore drilled in chemically active elastoplastic formations. Rock Mech Rock Eng 44(5):541–552. https://doi.org/10.1007/s00603-011-0141-x

    Article  Google Scholar 

  • Schoenball M, Sahara DP, Kohl T (2014) Time-dependent brittle creep as a mechanism for time-delayed wellbore failure. Int J Rock Mech Min Sci 70:400–406. https://doi.org/10.1016/j.ijrmms.2014.05.012

    Google Scholar 

  • Wang H (2000) Theory of linear poroelasicity with applications to geomechanics and hydrogeology, 24. http://press.princeton.edu/titles/7006.html

  • Warlick LM, Abass HH, Khan MR, Pardo Techa CH, Tahini AM, Shehri DA, Badairy HH, Shobaili YM, Finkbeiner T, Perumalla S (2009) Evaluation of wellbore stability during drilling and production of open hole horizontal wells in a carbonate field. In: SPE Saudi Arabia section technical symposium. https://doi.org/10.2118/126157-ms

  • Xu G, Yu H-S, Reddish DJ (2004) Numerical modelling of wellbore instability: a review. In: Mining science and technology: proceedings of the 5th international symposium on mining science and technology, Xuzhou, China 20–22 October 2004, p 363

  • Zeynali ME (2012) Mechanical and physico-chemical aspects of wellbore stability during drilling operations. J Petrol Sci Eng 82–83:120–124. https://doi.org/10.1016/j.petrol.2012.01.006

    Article  Google Scholar 

  • Zheng J, Ju Y, Liu H, Zheng L, Wang M (2016) Numerical prediction of the decline of the shale gas production rate with considering the geomechanical effects based on the two-part Hooke’ S model. Fuel 185:362–369. https://doi.org/10.1016/j.fuel.2016.07.112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Fahimifar.

Appendix

Appendix

The stress Eqs. (7)–(9) around a wellbore with satisfying equilibrium equation, Hooke’s law and boundary conditions proposed by Fjar et al. (2008).

$$\begin{aligned} \sigma_{r} & = a_{1} \left( {1 - \frac{{R_{w}^{2} }}{{r^{2} }}} \right) + a_{2} \left( {1 + 3\frac{{R_{w}^{4} }}{{r^{4} }} - 4\frac{{R_{w}^{2} }}{{r^{2} }}} \right)\cos 2\theta \\ & \quad + \tau_{xy}^{^\circ } \left( {1 + 3\frac{{R_{w}^{4} }}{{r^{4} }} - 4\frac{{R_{w}^{2} }}{{r^{2} }}} \right)\sin 2\theta \\ & \quad + \frac{2\eta }{{r^{2} }}\left( \begin{array}{l} \mathop \int \limits_{{R_{w} }}^{r} r^{\prime}\Delta P_{f} (r^{\prime})dr^{\prime} \hfill \\ - \frac{{r^{2} - R_{w}^{2} }}{{R_{0}^{2} - R_{w}^{2} }}\mathop \int \limits_{{R_{w} }}^{{R_{0} }} r^{\prime}\Delta P_{f} (r^{\prime})dr^{\prime} \hfill \\ \end{array} \right) \\ & \quad + P_{w} \frac{{R_{w}^{2} }}{{r^{2} }}, \\ \end{aligned}$$
(7)
$$\begin{aligned} \sigma_{\theta } & = a_{1} \left( {1 + \frac{{R_{w}^{2} }}{{r^{2} }}} \right) - a_{2} \left( {1 + 3\frac{{R_{w}^{4} }}{{r^{4} }}} \right)\cos 2\theta \\ & \quad - \tau_{xy}^{^\circ } \left( {1 + 3\frac{{R_{w}^{4} }}{{r^{4} }}} \right)\sin 2\theta \\ & \quad - \frac{2\eta }{{r^{2} }}\left( \begin{array}{l} \mathop \int \limits_{{R_{w} }}^{r} r^{\prime}\Delta P_{f} (r^{\prime})dr^{\prime} - r^{2} \Delta P_{f} \left( r \right) \hfill \\ + \frac{{r^{2} + R_{w}^{2} }}{{R_{0}^{2} - R_{w}^{2} }}\mathop \int \limits_{{R_{w} }}^{{R_{0} }} r^{\prime}\Delta P_{f} (r^{\prime})dr^{\prime} \hfill \\ \end{array} \right) \\ & \quad - P_{w} \frac{{R_{w}^{2} }}{{r^{2} }}, \\ \end{aligned}$$
(8)
$$\begin{aligned} \sigma_{z} & = \sigma_{z}^{^\circ } - 4\nu \left( {a_{2} \frac{{R_{w}^{2} }}{{r^{2} }}\cos 2\theta + \tau_{xy}^{^\circ } \frac{{R_{w}^{2} }}{{r^{2} }}\sin 2\theta } \right) \\ & \quad + 2\eta \, \Delta P_{f} \left( r \right) - 4\eta \frac{\nu }{{R_{0}^{2} - R_{w}^{2} }}\mathop \int \limits_{{R_{w} }}^{{R_{0} }} r^{\prime}\Delta P_{f} (r^{\prime})dr^{\prime} \\ \end{aligned}$$
(9)

In the Eq. (10), the variable used in the Eqs. (7)–(9) are defined.

$$\begin{aligned} & a_{1} = \left( {\frac{{\sigma_{x}^{^\circ } + \sigma_{y}^{^\circ } }}{2}} \right), \quad a_{2} = \left( {\frac{{\sigma_{x}^{^\circ } - \sigma_{y}^{^\circ } }}{2}} \right), \quad \eta = \frac{1 - 2v}{2(1 - v)}\alpha \\ & \Delta P_{f} (r) = P_{f} (r) - P_{{f_{0} }} , \\ & \sigma_{x}^{^\circ } = I_{{xx^{\prime}}}^{2} \sigma_{H} + I_{{xy^{\prime}}}^{2} \sigma_{h} + I_{{xz^{\prime}}}^{2} \sigma_{v} , \\ & \sigma_{y}^{^\circ } = I_{{yx^{\prime}}}^{2} \sigma_{H} + I_{{yy^{\prime}}}^{2} \sigma_{h} + I_{{yz^{\prime}}}^{2} \sigma_{v} , \\ & \sigma_{z}^{^\circ } = I_{{zx^{\prime}}}^{2} \sigma_{H} + I_{{zy^{\prime}}}^{2} \sigma_{h} + I_{{zz^{\prime}}}^{2} \sigma_{v} , \\ & \tau_{xy}^{^\circ } = I_{{xx^{\prime}}} I_{{yx^{\prime}}} \sigma_{H} + I_{{xy^{\prime}}} I_{{yy^{\prime}}} \times \sigma_{h} + I_{{xz^{\prime}}} I_{{yz^{\prime}}} \sigma_{v} , \\ & {\text{where}} \\ & I_{{xx^{\prime}}} = \cos a \times \cos i; \quad I_{{yx^{\prime}}} = - \sin a;\quad I_{{zx^{\prime}}} = \cos a \times \sin i, \\ & I_{{xy^{\prime}}} = \sin a \times \cos i; \quad I_{{yy^{\prime}}} = \cos a; \quad I_{{zy^{\prime}}} = \sin a \times \sin i, \\ & I_{{xz^{\prime}}} = - \sin i; \quad I_{{yz^{\prime}}} = 0;\quad I_{{zz^{\prime}}} = \cos i, \\ \end{aligned}$$
(10)

In Eq. (10); σH is the maximum horizontal stress, σh the minimum horizontal stress, Rw the radius of the well, R0 the drainage radius, Pf the pore pressure in the distance r from the wellbore center, P f0 the reservoir pressure, \(\vartheta\) the Poisson’s ratio and α is the Biot coefficient. According to Fig. 5, the angles \(a\) and i are used for transformation of stresses from the vertical wellbore to deviated wellbore (Heidarian et al. 2014; Al-Shaaibi et al. 2013).

Fig. 5
figure 5

(reproduced with permission from Al-Shaaibi et al. 2013)

The angles a and i for transformation of stresses from the vertical well to deviated well used in the Eqs. 810

Assuming that pore pressure changes are constant with radius and time, (\(\frac{\partial p}{\partial r} = 0\),\(\frac{\partial p}{\partial t} = 0\)) solution of the Eqs. (710) was presented in Fig. 6 (Fjar et al. 2008).

Fig. 6
figure 6

(reproduced with permission from Fjar et al. 2008)

Analytical solution of the Eqs. 710 for Pf = constant (elastic stress solution)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tohidi, A., Fahimifar, A. & Rasouli, V. Analytical Solution to Study Depletion/Injection Rate on Induced Wellbore Stresses in an Anisotropic Stress Field. Geotech Geol Eng 36, 1735–1744 (2018). https://doi.org/10.1007/s10706-017-0429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-017-0429-z

Keywords

Navigation