Skip to main content
Log in

Coupled Behavior of Cemented Paste Backfill at Early Ages

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Once cemented paste backfill (CPB) is poured into a mine stope, it is subjected to strong coupled thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes. A laboratory investigation is performed to understand the THMC behavior of CPB at early ages. An experimental setup is developed to study the THMC behavior of CPB. The testing and monitoring are conducted in undrained conditions, with and without pressure application, and take into consideration two types of tailings (artificial and natural). The evolutions of the total pressure, pore pressure, suction, temperature and electrical conductivity are monitored for a period of 7 days. Also, the CPB samples are tested or analyzed with regards to their shear strength properties, hydraulic conductivity, thermal conductivity, and physical and microstructural characteristics at 1, 3 and 7 days. The obtained results show that the THMC properties of CPB are strongly coupled due to several mechanisms, such as curing stress, heat of hydration, self-desiccation and pore fluid chemistry. The results presented in this paper will provide a better understanding of the THMC behavior of CPB at early ages and thus contribute to the better designing of CPB structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abdul-Hussain N, Fall M (2011) Unsaturated hydraulic properties of cemented tailings backfill that contains sodium silicate. Eng Geol 123(4):288–301

    Article  Google Scholar 

  • Abdul-Hussain N, Fall M (2012) Thermo-hydro-mechanical behaviour of sodium silicate cemented backfill in column experiments. Tunn Undergr Space Technol 29:85–93

    Article  Google Scholar 

  • Ahnberg H (2007) On yield stresses and the influence of curing stresses on stress paths and strength measured in triaxial testing of stabilized soils. Can Geotech J 44(1):54–66

    Article  Google Scholar 

  • ASTM D7263-09 (2009) Standard test methods for laboratory determination of density (unit weight) of soil specimens. ASTM International, West Conshohocken. www.astm.org

  • ASTM C143 (2010) Standard test method for slump of hydraulic-cement concrete. ASTM International, West Conshohocken. www.astm.org

  • ASTM D5084 (2010) Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM International, West Conshohocken. www.astm.org

  • ASTM D3080 (2011) Standard Test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken. www.astm.org

  • ASTM C39 (2012) Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken. www.astm.org

  • ASTM D2216-10 (2010) Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. ASTM International, West Conshohocken. www.astm.org

  • Barneyback RS, Diamond S (1981) Expression and analysis of pore fluids from hardened cement pastes and mortars. Cem Concr Res 11(2):279–285

    Article  Google Scholar 

  • Belem T, Benzaazoua M, Bussière B, Dagenais AM (2002) Effects of settlement and drainage on strength development within mine paste backfill. In: Proceedings of tailings and mine waste’02, Fort Collins, Colorado. Balkema, Rotterdam. 27–30 Jan 2002, pp 139–148

  • Benzaazoua M, Fall M, Belem T (2004) A contribution to understanding the hardening process of cemented pastefill. Miner Eng 17(12):141–152

    Article  Google Scholar 

  • Celestin J, Fall M (2009) Thermal conductivity of cemented paste backfill material and factors affecting it. Int J Min Reclam Environ 23(4):274–290

    Article  Google Scholar 

  • Cihangir F, Ercikdi B, Kesimal A, Turan A, Deveci H (2012) Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: effect of binder type and dosage. Miner Eng 30:33–43

    Article  Google Scholar 

  • Cook RA, Hover KC (1999) Mercury porosimetry of hardened cement pastes. Cem Concr Res 29:933–943

    Article  Google Scholar 

  • Diamond S (2004) The microstructure of cement paste and concrete—a visual primer. Cem Concr Compos 26(8):919–933

    Article  Google Scholar 

  • Double DD (1983) New developments in understanding the chemistry of cement hydration. Philos Trans R Soc Lond A 310(1511):53–66

    Article  Google Scholar 

  • Dullien FAL (1992) Porous media: fluid transport and pore structure, 2nd edn. Academic Press, New York

    Google Scholar 

  • Ercikdi B, Cihangir F, Kesimal A, Deveci H, Alp I (2009) Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings. J Hazard Mater 168(2–3):848–856

    Article  Google Scholar 

  • Ercikdi B, Cihangir F, Kesimal A, Deveci H, Alp I (2010) Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings. J Hazard Mater 179(1–3):940–946

    Article  Google Scholar 

  • Ercikdi B, Baki H, Izki M (2013) Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill. J Environ Manag 115(30):5–13

    Article  Google Scholar 

  • Espinos RM, Franke L (2006) Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste. Cem Concr Res 36(10):1969–1984

    Article  Google Scholar 

  • Fall M, Benzaazoua M (2005) Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization. Cem Concr Res 35(2):301–314

    Article  Google Scholar 

  • Fall M, Pokharel M (2010) Coupled effect of sulphate and temperature on the strength development of cemented backfill tailings: Portland cement paste backfill. Cem Concr Compos 32(10):819–828

    Article  Google Scholar 

  • Fall M, Samb S (2008) Pore structure of cemented tailings materials under natural or accidental thermal loads. Mater Charact 59(5):598–605

    Article  Google Scholar 

  • Fall M, Samb SS (2009) Effect of high temperature on strength and microstructural properties of cemented paste backfill. Fire Saf J 44(4):642–651

    Article  Google Scholar 

  • Fall M, Benzaazoua M, Ouellet S (2005) Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill. Miner Eng 18(1):41–44

    Article  Google Scholar 

  • Fall M, Belem T, Samb S, Benzaazoua M (2007) Experimental characterization of the stress–strain behaviour of cemented paste backfill in compression. J Mater Sci 42(11):3914–3992

    Article  Google Scholar 

  • Fall M, Benzaazoua M, Saa EG (2008) Mix proportioning of underground cemented tailings backfill. Tunn Undergr Space Technol 28(1):80–90

    Article  Google Scholar 

  • Fall M, Adrien D, Celestin J, Pokharel M, Toure M (2009) Saturated hydraulic conductivity of cemented paste backfill. Miner Eng 22(15):1307–1317

    Article  Google Scholar 

  • Fall M, Celestin J, Pokharel M, Touré M (2010a) A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill. Eng Geol 114(3–4):397–413

    Article  Google Scholar 

  • Fall M, Célestin JC, Sen HF (2010b) Potential use of polymer-pastefill as waste containment barrier materials. J Waste Manag 30:2570–2578

    Article  Google Scholar 

  • Farkish A, Fall M (2013) Rapid dewatering of oil sands mature fine tailings using super absorbent polymer. Miner Eng 50–51:38–47

    Article  Google Scholar 

  • Gawin D, Pesavento F, Schrefler BA (2007) Modelling creep and shrinkage of concrete by means of effective stresses. J Mater Struct 40(6):579–591

    Article  Google Scholar 

  • Ghirian A, Fall M (2013) Coupled thermo-hydro-mechanical–chemical behaviour of cemented paste backfill in column experiments. Part I: physical, hydraulic and thermal processes and characteristics. Eng Geol 164:195–207

    Article  Google Scholar 

  • Ghirian A, Fall M (2014) Coupled thermo-hydro-mechanical–chemical behaviour of cemented paste backfill in column experiments. Part II: mechanical, chemical and microstructural processes and characteristics. Eng Geol 170:11–23

    Article  Google Scholar 

  • Godbout J (2005) Evolution des proprieties des remblais miniers cimentés en pate durant le curage. Mémoire de Maitrise, Ecole Polytechnique de Montréal, p 212 

  • Hansen TC, Radjy FE, Sellevold EJ (1973) Cement paste and concrete. Annu Rev Mater Sci 3:233–268

    Article  Google Scholar 

  • Hassani F, Archibald J (1998) Mine Backfill (CD-ROM). Canadian Institute of Mine, Metallurgy and Petroleum, p 262

    Google Scholar 

  • Helinski M (2007) Mechanics of mine backfill. PhD thesis, The University of Wstern Australia, p 259

  • Helinski M, Fourie AB, Fahey M (2006) Mechanics of early age cemented paste backfill. In: Proceedings of the 9th international seminar on paste and thickened tailings, Limerick, pp 313–322

  • Horai KI (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 76(5):1278–1308

    Article  Google Scholar 

  • Huang S, Xia K, Qiao L (2011) Dynamic tests of cemented paste backfill: effects of strain rate, curing time, and cement content on compressive strength. J Mater Sci 46(15):5165–5170

    Article  Google Scholar 

  • Huynh L, Beattie DA, Fornasiero D, Ralston J (2006) Effect of polyphosphate and naphthalene sulfonate formaldehyde condensate on the rheological properties of dewatered tailings and cemented paste backfill. Miner Eng 19(1):28–36

    Article  Google Scholar 

  • Kesimal A, Ercikdi B, Yilmaz E (2003) The effect of desliming by sedimentation on paste backfill performance. Miner Eng 16(10):1009–1011

    Article  Google Scholar 

  • Kesimal A, Yilmaz E, Ercikdi B, Alp I, Deveci H (2005) Effect of properties of tailings and binder on the short and long-term strength and stability of cemented paste backfill. Mater Lett 59(28):3703–3709

    Article  Google Scholar 

  • Khan MI (2002) Factors affecting the thermal properties of concrete and applicability of its prediction models. Build Environ 37(7):607–614

    Article  Google Scholar 

  • Kim K-H, Jeon S-E, Kim J-K, Yang S (2003) An experimental study on thermal conductivity of concrete. Cem Concr Res 33(3):363–371

    Article  Google Scholar 

  • Klein KA, Simon D (2006) Effect of specimen composition on the strength development in cemented paste backfill. Can Geotech J 43:310–324

    Article  Google Scholar 

  • Landriault D (2001) Chapter 69: backfill in underground mining. In: Hustrulid WA, Bullock RL (eds) Underground mining methods: engineering fundamentals and international case studies. Society for Mining, Metallurgy and Exploration, Littleton, pp 29–48

    Google Scholar 

  • Le Roux KA, Bawden WF, Grabinsky MW (2005) Field properties of cemented paste backfill at the Golden Giant mine. Mining Technol 114(2):65–80

    Article  Google Scholar 

  • Levita G, Marchetti A, Gallone G, Princigallo A, Guerrin GL (2000) Electrical properties of fluidized Portland cement mixes in the early stage of hydration. Cem Concr Res 30(6):923–930

    Article  Google Scholar 

  • Li L, Aubertin M (2009) Influence of water pressure on the stress state in stopes with cohesionless backfill. Geotech Geol Eng 27(1):1–11

    Article  Google Scholar 

  • Lothenbach B, Wieland E (2006) A thermodynamic approach to the hydration of sulphate-resisting Portland cement. Waste Manag 26(7):706–719

    Article  Google Scholar 

  • Lothenbach B, Winnefeld F, Alder C, Wieland E, Lunk P (2007) Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cem Concr Res 37(4):483–491

    Article  Google Scholar 

  • Mahlaba JS, Kearsley EP, Kruger RA, Pretorius PC (2011) Evaluation of workability and strength development of fly ash pastes prepared with industrial brines rich in and Cl to expand brine utilisation. Miner Eng 24(10):1077–1081

    Article  Google Scholar 

  • Manmohan D, Mehta PK (1981) Influence of pozzolanic slag, and chemical admixtures on PSD and permeability of hardened cement pastes. J Cem Concr Aggreg 3:63–67

    Article  Google Scholar 

  • Meddah SM, Tagnit-Hamou A (2011) Evaluation of rate of deformation for early-age concrete shrinkage analysis and time zero determination. J Mater Civ Eng 23(7):1076–1086

    Article  Google Scholar 

  • Mehta PK, Monteiro PJM (2013) Concrete: microstructure, properties, and materials, 4th edn. McGraw Hill, New York

    Google Scholar 

  • MPS-2 Operator’s Manual (2014) MPS-2 & MPS-6 dielectric water potential sensors manual. Decagon Devices, Inc., Version: December 4, 2014

  • Nasir O, Fall M (2008) Shear behaviour of cemented pastefill-rock interfaces. Eng Geol 101(3–4):146–153

    Article  Google Scholar 

  • Nasir O, Fall M (2009) Modeling the heat development in hydrating CPB structures. Comput Geotech 36(7):1207–1218

    Article  Google Scholar 

  • Nasir O, Fall M (2010) Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages. Tunn Undergr Space Technol 25(1):9–20

    Article  Google Scholar 

  • Orejarena L, Fall M (2008) Mechanical response of a mine composite material to extreme heat. Bull Eng Geol Environ 67(3):387–396

    Article  Google Scholar 

  • Orejarena L, Fall M (2010) The use of artificial neural network to predict the effect of sulphate on the strength of cemented paste backfill. Bull Eng Geol Environ 69(4):659–670

    Article  Google Scholar 

  • Orejarena L, Fall M (2011) Artificial neural network based modeling of the coupled effect of sulphate and temperature on the strength of cemented paste backfill. Can J Civ Eng 38(1):100–109

    Article  Google Scholar 

  • Pacheco-Torgal F, Castro-Gomes J, Jalali S (2007) Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cem Concr Res 37(6):933–941

    Article  Google Scholar 

  • Pokharel M, Fall M (2011) Coupled thermo-chemical effects on the strength development on Slag-Paste backfill materials. ASCE J Mater Civil Eng 23(5):511–525

    Article  Google Scholar 

  • Rankine RM, Rankine KJ, Sivakugan N, Karunasena W, Bloss ML (2001) Geotechnical characterisation and stability analysis of BHP Cannington paste. II. In: Proceedings of the 15th international conference on soil mechanics and geotechnical engineering, pp 1241–1244

  • Ritcey GM (2005) Tailings management in gold plants. Hydrometallurgy 78(1–2):3–20

    Article  Google Scholar 

  • Swaddiwudhipong S, Chen D, Zhang MH (2002) Simulation of the exothermic process of Portland cement. Adv Cem Res 14(2):61–69

    Article  Google Scholar 

  • Taylor HFW (1997) Cement Chemistry, 2nd edn. Thomas Telford Publishing, London

    Book  Google Scholar 

  • Thompson BD, Grabinsky MW, Bawden WF (2009) In-situ measurements of cemented paste backfill in long-hole stope. In: Proceedings of the 3rd CANUS rock mechanics symposium, Toronto

  • Thottarath S (2010) Electromagnetic characterization of cemented paste backfill in the field and laboratory. Master thesis, p 105

  • Tzouvalas G, Dermatas N, Tsimas S (2004) Alternative calcium sulfate-bearing materials as cement retarders: part I. Anhydrite. Cem Concr Res 34(11):2113–2118

    Article  Google Scholar 

  • Wu D, Fall M, Cai S-J (2012) Coupled modeling of temperature distribution and evolution in cemented tailings backfill structures that contains mineral admixtures. J Geotech Geol. doi:10.1007/s10706-012-9518-1

    Google Scholar 

  • Wu D, Fall M, Cai S-J (2013) Coupling temperature, cement hydration and rheological behaviour of cemented paste backfill structures. Miner Eng 42:76–87

    Article  Google Scholar 

  • Yilmaz E, Kesimal A, Deveci H, Ercikdi B (2003) The factors affecting the performance of paste backfill: physical, chemical and mineralogical characterization. First engineering sciences congress for young researcher (MBGAK’03), Istanbul

  • Yilmaz E, Kesimal A, Ercidi B (2004) Strength development of paste backfill simples at Long term using different binders. In: Proceedings of 8th symposium MineFill04, China, pp 281–285

  • Yilmaz E, Benzaazoua M, Belem T, Bussiere B (2009) Effect of curing under pressure on compressive strength development of cemented paste backfill. Miner Eng 22(9–10):772–785

    Article  Google Scholar 

  • Yilmaz E, Belem T, Benzaazoua M (2014) Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical of cemented paste backfills. Eng Geol 168:23–37

    Article  Google Scholar 

  • Yin S, Wu A, Hu K, Wang Y, Zhang Y (2012) The effect of solid components on the rheological and mechanical properties of cemented paste backfill. Miner Eng 35:61–66

    Article  Google Scholar 

  • Zhou Q, Beaudoin JJ (2003) Effect of applied hydrostatic stress on the hydration of Portland cement and C3S. Adv Cem Res 15(1):9–16

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the University of Ottawa and the industrial partners in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Fall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghirian, A., Fall, M. Coupled Behavior of Cemented Paste Backfill at Early Ages. Geotech Geol Eng 33, 1141–1166 (2015). https://doi.org/10.1007/s10706-015-9892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-015-9892-6

Keywords

Navigation