Skip to main content
Log in

Analysis of Rigid Short Caisson with Granular Core Incorporating Nonlinear Interface and Base Responses

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

It is difficult to construct a conventional shallow foundation in alluvial lowlands because of soft soils and high ground water table. A rigid short caisson foundation with granular core is being proposed for alluvial lowlands. The proposed foundation is analyzed using non-linear hyperbolic stress–displacement responses of homogeneous alluvial deposits. Extensive parametric studies are carried out to study the effects of length ratio (L/d0), diameter ratio (d/d0) of granular core with respect to casing, relative stiffness of shaft (ατ), relative casing base stiffness (αb), and friction angle of granular material (ϕgp) on the load sharing and the settlement of the proposed foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

d:

Diameter of granular core/inner diameter of the well casing

d0 :

Diameter (outer) of the well casing

Dgp :

Constrained modulus of granular core

Es :

Modulus of deformation of soil

Egp :

Modulus of deformation of granular core

K:

Coefficient of lateral pressure

kgp :

Winkler’s subgrade reaction coefficient of granular core

ksL :

Winkler’s subgrade reaction coefficient at base of granular core

kst,s :

Winkler’s subgrade reaction coefficient of casing at surface of soil

kst,b :

Winkler’s subgrade reaction coefficient at base of casing

\(\left({\frac{\hbox{k}_{\rm sL}\hbox{d}}{\hbox{Q}_{\rm ult}}} \right)\) :

Non-linear bearing parameter

\(\left({\frac{\hbox{k}_{\rm sL}\hbox{d}}{\tau_{\rm ult}}}\right)\) :

Non-linear shear parameter

L:

Length of casing

Q:

Load applied to composite foundation with granular core

Qst :

Load taken (shared) by the well casing of composite foundation

Qgp :

Load taken (shared) by the granular core of composite foundation

qst :

Load intensity (stress) taken by the well casing of the composite foundation

qgp :

Load intensity (stress) taken by the granular core of the composite foundation

qst,s :

Load intensity (stress) taken by the casing (surface) of the composite foundation

qst,b :

Load intensity (stress) taken by the casing (base) of the composite foundation

qgp,s :

Load intensity (stress) taken by the granular core (surface) of the composite foundation

qgp,b :

Load intensity (stress) at the granular core (base) of the composite foundation

qult :

Ultimate bearing capacity of composite foundation with granular core

R:

Relative granular core stiffness

Rgp :

Constant

wst :

Displacement of the casing relative to soil

wsL :

Displacement of the granular core at base

αb :

Relative casing base stiffness

ατ :

Relative stiffness of shaft

If :

Settlement influence factor

τgp :

Shearing stress on the surface of the granular core

τi :

Shearing stress on the inner surface of the casing

τo :

Shearing stress on the outer surface of the casing

νs :

Poisson’s ratio of soil

νgp :

Poisson’s ratio of granular core

ϕgp :

Angle of friction of granular core

ϕ:

Angle of friction of soil

\(\left({\frac{\hbox{E}_{\rm gp}}{\hbox{E}_{\rm s}}} \right)\) :

Ratio of constrained modulus and modulus of deformation of granular core

References

  • Alamgir M, Miura N, Poorooshasb HB, Madhav MR (1996) Deformation analysis soft ground reinforced by columnar inclusions. Comput Geotech 18(4):267–290. doi:10.1016/0266-352X(95)00034-8

    Article  Google Scholar 

  • Banerjee PK, Driscoll RM (1976) Three dimensional analysis of racked pile group. Proc Int Conf Civ Eng I:653–671

    Google Scholar 

  • De Nicola A, Randolph MF (1997) The plugging behaviour of driven and jacked piles in sand. Geotechnique 47(4):841–856

    Google Scholar 

  • Duncan JM, Chang CY (1970) Nonlinear analysis of stress and strain in soils. J Soil Mech Found Div 96(SM5):1629–1651

    Google Scholar 

  • Ghosh C, Madhav MR (1999) Non-linear subgrade modeling of granular fill soft soil. Indian Geotech J 25(4):339–361

    Google Scholar 

  • Hatanaka M, Uchida A (1996) Empirical correlation between penetration resistance and internal friction angle of sandy soil. Soils Found 36(4):1–10

    Google Scholar 

  • Lehane BM, Gavin KG (2001) Base resistance of jacked pipe piles in sand. J Soil Mech Found Div 127(6):473–480

    Google Scholar 

  • Miura N, Madhav MR, Koga K (1994). Lowlands: developments and management. A. A. Balkema, Netherlands, pp 1–8

    Google Scholar 

  • O’Neill MW, Raines RD (1992) Load transfer for pipe piles in highly pressured dense sand. J Soil Mech Found Div 117(8):1208–1226

    Google Scholar 

  • Poulos HG, Davis EH (1981). Pile foundation analysis and design. Wiley, New York

    Google Scholar 

  • Randolph MF, Leong EC, Houlsby GT (1991) One dimensional analysis of soil plug in pipe piles. Geotechnique 41(4):587–598

    Article  Google Scholar 

  • Schmertmann JH (1970) Static cone to compute settlement over sand. J Soil Mech Found Div 96(3):1011–1043

    Google Scholar 

  • Scott RF (1981) Foundation analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Yokoyama Y (1985) A nonlinear analysis of pile structures. Soils Found 25:92–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed M. Ali Jawaid.

Appendices

Appendix A: Sinking and Installation of Proposed Foundation

In order to help in sinking of the proposed foundation, material (soil) is dredged or excavated and removed from the inside of well casing (steining). If its own weight is not sufficient, it may be possible to put on the well an additional weight and kentledge to overcome side friction and effect sinking. Sinking can be expedited by excavating deeper than cutting edge and making a sump, a few centimeters deep, in the well. A sump of greater depth is dangerous as it may cause the well to sink with a jerk. After being sunk to its final stage, granular material is filled in and compacted to achieve maximum dry density. Proposed foundation after sinking and installation is shown in Fig. 21.

Fig. 21
figure 21

Proposed foundation after sinking and installation

Appendix B: Analysis

The loads shared by the well casing, Qst, and the granular core, Qgp, are controlled by the stiffness and the geometry of the foundation and the interfacial shear stresses. The vertical force equilibrium for the composite foundation with granular core inside is expressed as

$$ \hbox{Q}=\hbox{Q}_{\rm st}+\hbox{Q}_{\rm gp} $$
(B.1)

or

$$ \hbox{Q}=\hbox{Q}_{\rm st,s} +\hbox{Q}_{\rm st,b}+\hbox{Q}_{\rm gp,L} $$
(B.2)

where Qst,s and Qst,b are respectively the loads shared by the shaft surface and the base of the casing and Qgp,L the load at the base of granular core (i.e. at the level of the foundation) (Fig. 4). Equation B.2 in terms of stresses becomes

$$\hbox{q}\,\cdot\,\pi{\left(\frac{\hbox{d}_0^{2}}{4}\right)}=\pi \hbox{d}_0\hbox{L}\tau+\pi \left( {\frac{\hbox{d}_0^{2}-\hbox{d}^{2}}{4}} \right)\hbox{q}_{\rm st,b}+\pi\left( {\frac{\hbox{d}^{2}}{4}} \right) \hbox{q}_{\rm gp,L} $$
(B.3)

or

$$ \hbox{q}=4\left({\frac{\hbox{L}}{\hbox{d}_0}}\right) \tau+\left({1-\left( {\frac{\hbox{d}^{2}}{\hbox{d}_0^{2}}} \right)} \right)\hbox{q}_{\rm st,b}+\left( {\frac{\hbox{d}^{2}}{\hbox{d}_0^{2}}}\right) \hbox{q}_{\rm gp,L} $$
(B.4)

where q, τ, qst,b and qgp,L are the average stresses acting on the foundation, outer surface of the casing and the bases of the casing and the granular core respectively.

The vertical equilibrium of an element of the granular core (Fig. 5), neglecting its weight, is

$$ (\sigma_{\rm z}+\Updelta\sigma_{\rm z})\left( {\frac{\pi }{4}} \right)\hbox{d}^{2}-\sigma_{\rm z} \left( {\frac{\pi }{4}} \right)\hbox{d}^{2}-\tau_{\rm gp}( \pi \hbox{ d})=0 $$
(B.5)

or

$$ \left({\frac{\hbox{d}\sigma\hbox{z}}{\hbox{dz}}} \right)- \left( {\frac{4}{\hbox{d}}} \right)\tau_{\rm gp}=0 $$
(B.6)

where σz and τgp are the vertical and shear stresses on the surface of granular core respectively.

Assuming full mobilization of interface shear resistance between the granular core and the inner surface of the casing, i.e. τgp = σh·tan δ = K σz tan δ where K is the coefficient of lateral earth pressure and δ is the wall friction angle. Substituting for τgp in Eq. B.6, the solution of the above differential equation is obtained as

$$ \sigma_{\rm z} = \hbox{c}_{0}\,\hbox{exp}\,(\hbox{c}_{1}\hbox{z}) $$
(B.7)

where c1 = (4/d) K tan δ and c0 is a constant. At the top of granular core i.e. z = 0, \(\sigma_{\rm z}=\hbox{q}_{\rm gp}=\frac{\hbox{Q}\hbox{gp}}{\pi\left({\frac{\hbox{d}^{2}}{4}}\right)}.\) Hence, c0 = qgp. The stress transferred by the granular core, qgp, L, to the soil below becomes

$$ \hbox{q}_{\rm gp,L}=\hbox{q}_{\rm gp}\hbox{R}_{\rm gp} $$
(B.8)

where Rgp = exp (c1L).

Substituting Eq. B.8 in Eq. B.4, one gets

$$ \hbox{q}=4\left( {\frac{\hbox{L}}{\hbox{d}_0}} \right) \tau+\left( {1-\left( {\frac{\hbox{d}^{2}}{\hbox{d}_0^{2}}} \right)} \right)\hbox{q}_{\rm st,b}+\left( {\frac{\hbox{d}^{2}}{\hbox{d}_0^{2}}} \right) \hbox{q}_{\rm gp }\hbox{R}_{\rm gp} $$
(B.9)

Settlement of soil below granular core, wsL (Poulos and Davis 1981; Scott 1981), for linear stress–settlement response is

$$ \hbox{w}_{\rm sL}=\sigma_{\rm z,L} \left( {\frac{\hbox{d }\left( { 1-\nu_{\rm s}^2} \right)}{\hbox{E}_{\rm s}}} \right)=\left( {\frac{{\hbox{q}_{\rm gp}}_{\rm ,L}}{\hbox{k}_{\rm sL}}} \right) $$
(B.10)

where If = an influence factor = constant and \(\hbox{k}_{\rm sL}=\left( {{\hbox{E}_{\rm s}}/{\hbox{d}\left({1-\nu_{\rm s}^2}\right)\hbox{I}_{\rm f}}}\right)\)—modulus of subgrade reaction of the soil below the granular core.

Duncan and Chang (1970) proposed a hyperbolic relationship for stress, σ, strain, ɛ, relationship that is non-linear. The hyperbolic relation is of the form

$$ \Updelta\sigma=\frac{\varepsilon}{\left({\hbox{a}+\hbox{b}\,\varepsilon} \right)} $$
(B.11)

where a and b are constants.

Considering the non-linear stress–settlement behavior of the alluvial soil and using the above mentioned hyperbolic relationship, one may write

$$ \hbox{q}_{\rm gp,L}=\frac{\hbox{w}_{\rm sL}}{\left( {\frac{1}{\hbox{k}_{\rm sL}}}\right)+\left( {\frac{1}{\hbox{q}_{\rm ult}}}\right)\hbox{w}_{\rm sL}} $$
(B.12)

or

$$ \hbox{q}_{\rm gp,L }=\left({\frac{\hbox{k}_{\rm sL}\hbox{ w}_{\rm sL} }{\left( {1+\left( {\frac{\hbox{k}_{\rm sL}} {\hbox{q}_{\rm ult}}} \right)\hbox{w}\hbox{sL}} \right)}} \right). $$
(B.13)

Substituting the value of qgp,L from Eq. B.8, one gets

$$ \hbox{q}_{\rm gp} \hbox{R}_{\rm gp}=\left( {\frac{\hbox{k}_{\rm sL} \hbox{w}_{\rm sL} }{\left( {1+\left( {\frac{\hbox{k}_{\rm sL}} {\hbox{q}_{\rm ult} }} \right)\hbox{w}_{\rm sL}}\right)}} \right) $$
(B.14)

for the settlement, wsL at the base of the granular core in terms of qgp, as

$$ \hbox{w}_{\rm sL}=\frac{\hbox{q}_{\rm gp}\hbox{R}_{\rm gp} }{\left( {\hbox{k}_{\rm sL}\left({1-\left( {\frac{\hbox{q}_{\rm gp} \hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult}}} \right)} \right)} \right)} $$
(B.15)

The granular core is under K0 condition and its compression, Δwgp, is evaluated by integrating the one dimensional compression equation for an element as

$$ \Updelta \hbox{w}_{\rm gp}=\int\limits_0^L \frac{\sigma_{\rm z}}{\hbox{D}_{\rm gp}} \hbox{dz} $$
(B.16)
$$ \Updelta \hbox{w}_{\rm gp}=\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{D}_{\rm gp}} } \right)\left[ {\frac{\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)\hbox{d}_0 (\hbox{R}_{\rm gp} -1)}{\hbox{t}}} \right] $$
(B.17)

where Rgp = exp (t(L/d0)/(d/d0)), t = 4 Ko tan δ, Dgp = the constrained modulus = [Egp(1−νgp)/(1 + νgp)(1−2νgp)] = β Egp and β  =  (1−νgp)/[(1 + νgp)(1−2 νgp)].

The settlement at the top of the granular core, wsL,0, i.e. at z = 0, is the sum of the compression of the core and the settlement of the alluvial soil below, and is given as

$$ \hbox{w}_{\rm st} =\hbox{w}_{\rm sL,0}=\hbox{w}_{\rm sL} +\Updelta \hbox{w}_{\rm sL} $$
(B.18)
$$ \hbox{w}_{\rm st}=\frac{\hbox{q}_{\rm gp}\hbox{R}_{\rm gp} }{\left({\hbox{k}_{\rm sL}\left( {1-\left( {\frac{\hbox{q}_{\rm gp}\hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult}}} \right)} \right)} \right)}+\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{D}_{\rm gp} }} \right)\left[ {\frac{\left({\frac{\hbox{d}}{\hbox{d}_0 }} \right)\hbox{d}_0 (\hbox{R}_{\rm gp}-1)}{\hbox{t}}} \right] $$
(B.19)
$$ \hbox{w}_{\rm st} =\hbox{q}_{\rm gp}\hbox{f}_1 $$
(B.20)

where

$$ \hbox{f}_{1}=\left( {\frac{R_{\rm gp} }{\hbox{k}_{\rm sL} \left( {1-\left( {\frac{\hbox{q}_{\rm gp}\hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult}}} \right)} \right)}} \right)+\left( {\frac{\hbox{d}\left( {R_{\rm gp} -1} \right)}{\hbox{D}_{\rm gp} \hbox{t}}} \right). $$
(B.21)

The casing assumed to be rigid settles by wst. Compatibility of displacements of the caisson and the top of the granular core requires

$$ \hbox{w}_{\rm st} = \hbox{w}_{\rm gp,0} $$
(B.22)

The non-linear shaft stress–shaft displacement and casing base pressure–base settlement (Fig. 6) relationships (Scott 1981) are

$$ \tau=\left({\frac{\hbox{k}_{\rm sts}\hbox{w}_{\rm st}}{\left( {1+\left( {\frac{\hbox{k}_{\rm sts}}{\tau _{\rm ult}}} \right)\hbox{w}_{\rm st}} \right)}} \right) $$
(B.23)

and

$$ \hbox{q}_{\rm st,b}=\left( {\frac{\hbox{k}_{\rm stb} \hbox{w}_{\rm st} }{\left( {1+\left( {\frac{\hbox{k}_{\rm stb} }{\hbox{q}_{\rm ult} }} \right)\hbox{w}_{\rm st}} \right)}} \right) $$
(B.24)

where τult, qult, kst,s and kst,b are the ultimate shear, ultimate bearing stress, casing shaft–soil and casing base–soil stiffness (subgrade) constants respectively. The stiffness, kst,s for casing shaft–soil stiffness is related to kst,b, the casing base–soil stiffness (Scott 1981) as

$$ \hbox{k}_{\rm st,s}=\alpha_{\tau}\hbox{k}_{\rm st,b} $$
(B.25)

while kst,b in turn is related to the subgrade constant ksL as

$$ \hbox{k}_{\rm st,b}=\alpha_{\rm b} \hbox{k}_{\rm sL} $$
(B.26)

where ατ and αb are constants of proportionality.

Substituting Eqs. B.23 and B.24 in Eq. B.9, one gets

$$ \hbox{q}=4\left({\frac{\hbox{L}}{\hbox{d}_0}} \right) \left( {\frac{\hbox{k}_{\rm sts} \hbox{w}_{\rm st} }{\left( {1+\left( {\frac{\hbox{k}_{\rm sts} }{\tau _{\rm ult} }} \right)\hbox{w}_{\rm st} } \right)}} \right)+\left( {1-\left( {\frac{\hbox{d}^{2}}{\hbox{d}_0^{2}}} \right)} \right)\left( {\frac{\hbox{k}_{\rm stb} \hbox{w}_{\rm st} }{\left( {1+\left( {\frac{\hbox{k}_{\rm stb} }{\hbox{q}_{\rm ult} }} \right)\hbox{w}_{\rm st} } \right)}} \right)+\left( {\frac{\hbox{d}^{2}}{\hbox{d}_0^{2}}} \right) \hbox{q}_{\rm gp }\hbox{R}_{\rm gp}. $$
(B.27)

Substituting the values of kst,s and kst,b from Eq. B.25 and Eq. B.26 respectively into Eq. B.27, one gets

$$ \hbox{q} =\left( {\frac{\hbox{w}_{\rm st} }{\hbox{d}_0 }} \right)\left[ {\left( {\frac{4\alpha_\tau \alpha_{\rm b}\left( {\frac{\hbox{L}}{\hbox{d}_0}} \right)\hbox{k}_{\rm s,L} \hbox{d}_0}{1+\alpha_\tau \alpha_{\rm b} \left( {\frac{\hbox{k}_{\rm sL} \hbox{ d}_0 }{\tau _{\rm ult} }} \right)\left( {\frac{\hbox{w}_{\rm st} }{\hbox{d}_0 }} \right)}} \right)+\left( {1-\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)^2}\right)\left( {\frac{\alpha_{\rm b} \hbox{k}_{\rm sL} \hbox{d}_0 }{1+\alpha_{\rm b} \left( {\frac{\hbox{k}_{\rm sL} \hbox{d}_0}{\hbox{q}_{\rm ult} }} \right)\left( {\frac{\hbox{w}_{\rm st}}{\hbox{d}_0}} \right)}} \right)} \right]+\left( {\frac{\hbox{d}}{\hbox{d}_0}} \right)^{2}\hbox{q}_{\rm gp}R_{\rm gp}. $$
(B.28)

Terms of Eq. B.20 may be re-arranged as

$$ \hbox{w}_{\rm st}=\hbox{q}_{\rm gp} \hbox{f}_{\rm 1}=\hbox{q}_{\rm gp} \left[ {\left( {\frac{\hbox{R}_{\rm gp} }{\hbox{k}_{\rm sL} \left( {1-\left( {\frac{\hbox{q}_{\rm gp} \hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult}}}\right)} \right)}} \right)+\left( {\frac{\left( {\frac{\hbox{d}}{\hbox{d}_0}} \right)\hbox{d}_0 \left( {\hbox{R}_{\rm gp} -1} \right)}{\hbox{D}_{\rm gp} \hbox{t}}}\right)}\right] $$
(B.29)

Normalizing wst with respect to d0, one gets

$$ \left( {\frac{\hbox{w}_{\rm st} }{\hbox{d}_0 }} \right)=\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{d}_0}} \right) \left[ {\left( {\frac{\hbox{R}_{\rm gp} }{\hbox{k}_{\rm sL} \left( {1-\left( {\frac{\hbox{q}_{\rm gp} \hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)} \right)}} \right)+\left( {\frac{\left( {\frac{\hbox{d}}{\hbox{d}_0}} \right)\hbox{d}_0 \left( {\hbox{R}_{\rm gp} -1} \right)}{\hbox{D}_{\rm gp} \hbox{t}}} \right)} \right] $$
(B.30)
$$ \left( {\frac{\hbox{w}_{\rm st} }{\hbox{d}_0 }} \right) = \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{d}_0 }} \right) \left( {\frac{1}{\hbox{k}_{\rm sL} }} \right)\left( {\left( {\frac{\hbox{R}_{\rm gp} }{\left( {1-\left( {\frac{\hbox{q}_{\rm gp} \hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)} \right)}} \right)+\left( {\frac{\left( {\hbox{R}_{\rm gp} -1} \right)}{\left( {\frac{\hbox{D}_{\rm gp} }{\hbox{k}_{\rm sL} \hbox{d}}} \right)\hbox{t}}} \right)} \right) $$
(B.31)
$$ \left( {\frac{\hbox{w}_{\rm st} }{\hbox{d}_0}} \right)= \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{k}_{\rm sL} \hbox{d}}} \right)\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right) \left[ {\left( {\frac{\hbox{R}_{\rm gp}}{\left( {1-\left( {\frac{\hbox{q}_{\rm gp} \hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult}}} \right)} \right)}} \right)+\left( {\frac{\left( {\hbox{R}_{\rm gp} -1} \right)}{\hbox{R t}}} \right)} \right]=\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{k}_{\rm sL} \hbox{ d}}} \right)\left( {\frac{\hbox{d}}{\hbox{d}_0 }}\right) \hbox{f}_{2} $$
(B.32)

where

$$ \hbox{R}= \hbox{relative granular core stiffness} =(\hbox{D}_{\rm gp}/\hbox{k}_{\rm sL}\hbox{d}). $$
(B.33)

Substituting the value of KsL from Eq. B.12 and value of Dgp into above equation, one gets

$$ \hbox{R}=\left( {\frac{\hbox{D}_{\rm gp} }{\hbox{k}_{\rm sL} \hbox{d}}} \right) $$
(B.34)
$$ =\left( {\frac{\beta \hbox{E}_{\rm gp} }{\left( {\frac{\hbox{E}_{\rm s} }{\hbox{d}(1-\upsilon_{\rm s}^2 )\hbox{I}_{\rm f}}} \right)\hbox{d}}} \right) $$
(B.35)
$$ =\beta^\ast \left( {\frac{\hbox{E}_{\rm gp} }{\hbox{E}_{\rm s}}} \right)=\beta^\ast \hbox{M}_{\rm R} $$
(B.36)

where \(\beta^\ast= (1- \nu_{\rm s}^{2}) I_{\rm f}\,\cdot\,\beta, \beta\,=\,(1 - \nu_{\rm gp}) / [(1+ \nu_{\rm gp}) (1- 2\,\nu_{\rm gp})]\) and

$$ \hbox{f}_{2}=\left[ {\left( {\frac{\hbox{R}_{\rm gp} }{\left( {1-\left( {\frac{\hbox{q}_{\rm gp} \hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)} \right)}} \right)+\left( {\frac{\left( {\hbox{R}_{\rm gp} -\hbox{1}} \right)}{\hbox{R t}}} \right)} \right]. $$
(B.37)

Substituting Eq. B.31 in Eq. B.28, one gets

$$ \hbox{q}=\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{k}_{\rm sL} \hbox{ d}_0 }} \right)\hbox{f}_2 \left[ {\left( {\frac{4\alpha_\tau \alpha_{\rm b}\left( {\frac{\hbox{L}}{\hbox{d}_0 }} \right)\hbox{ k}_{\rm sL} \hbox{d}_0 }{1+\alpha_\tau \alpha_{\rm b} \left( {\frac{\hbox{k}_{\rm sL} \hbox{ d}}{\tau_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{k}_{\rm sL} \hbox{ d}}} \right)\hbox{f}_2 }} \right)+\left( {1-\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)^{2}} \right)\left( {\frac{\alpha_{\rm b} \hbox{k}_{\rm sL} \hbox{d}_0 }{1+\alpha_{\rm b} \left( {\frac{\hbox{k}_{\rm sL} \hbox{d}}{\hbox{q}_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm gp}}{\hbox{k}_{\rm sL} \hbox{ d}}} \right)\hbox{ f}_2 }} \right)} \right] + \left( {\frac{\hbox{d}}{\hbox{d}_0}} \right)^{2}\hbox{q}_{\rm gp} \hbox{R}_{\rm gp} $$
(B.38)

Dividing both sides by qult,

$$ \left( {\frac{\hbox{q}}{\hbox{q}_{\rm ult} }} \right)= \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\hbox{ f}_2 \left[ {\left( {\frac{4\alpha_\tau \alpha_{\rm b} \left( {\frac{\hbox{L}}{\hbox{d}_0 }} \right)}{1+\alpha_\tau \alpha_{\rm b} \left( {\frac{\hbox{k}_{\rm sL} \hbox{ d}}{\tau_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm ult} }{\hbox{k}_{\rm sL} \hbox{d}}} \right)\hbox{f}_2 }} \right)+\left( {1-\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)^{2}} \right)\left( {\frac{\alpha_{\rm b} }{1+\alpha_{\rm b} \left( {\frac{\hbox{k}_{\rm sL} \hbox{ d}}{\hbox{q}_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm gp}}{\hbox{q}_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm ult} }{\hbox{k}_{\rm sL} \hbox{ d}}} \right)\hbox{f}_2 }} \right)} \right] + \left( {\frac{\hbox{d}}{\hbox{d}_0}} \right)^{2} \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\hbox{R}_{\rm gp} $$
(B.39)
$$ \left( {\frac{\hbox{q}}{\hbox{q}_{\rm ult} }} \right)= \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\hbox{ f}_2 \left[ {\left( {\frac{4\alpha_\tau \alpha_{\rm b}\left( {\frac{\hbox{L}}{\hbox{d}_0 }} \right)}{1+\alpha_\tau \alpha_{\rm b} \left( {\frac{\hbox{k}_{\rm sL} \hbox{ d}}{\tau_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm ult} }{\hbox{k}_{\rm sL} \hbox{d}}} \right)\hbox{f}_2 }} \right)+\left( {1-\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)^{2}} \right)\left( {\frac{\alpha_{\rm b} }{1+\alpha_{\rm b} \left( {\frac{\hbox{q}_{\rm gp}}{\hbox{q}_{\rm ult} }} \right)\hbox{ f}_2 }} \right)} \right] + \left( {\frac{\hbox{d}}{\hbox{d}_0}} \right)^{2} \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right) \hbox{R}_{\rm gp} $$
(B.40)
$$ \left( {\frac{\hbox{q}}{\hbox{q}_{\rm ult} }} \right)= \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\hbox{F} $$
(B.41)

or

$$ \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)=\left( {\frac{\hbox{q}}{\hbox{q}_{\rm ult} }} \right)\left( {\frac{1}{\hbox{F}}} \right) $$
(B.42)

or

$$ \left( {\frac{\hbox{Q}_{\rm gp} }{\hbox{Q}_{\rm ult} }} \right)=\left( {\frac{\hbox{q}}{\hbox{q}_{\rm ult} }} \right)\left( {\frac{(\hbox{d/d}_0)^{2}}{\hbox{F}}} \right) $$
(B.43)

or

$$ \left( {\frac{\hbox{Q}_{\rm st} }{\hbox{Q}_{\rm ult} }} \right)=\left( {1-\left( {\frac{\hbox{Q}_{\rm gp} }{\hbox{Q}_{\rm ult} }} \right)} \right)\ast 100 $$
(B.44)

where

$$ \hbox{F} = \left[ {\hbox{f}_2 \left( {\frac{4\alpha_\tau \alpha_{\rm b} \left( {\frac{\hbox{L}}{\hbox{d}_0 }} \right)}{1+\alpha_\tau \alpha_{\rm b} \left( {\frac{\hbox{A}_{\rm st} }{\hbox{B}_{\rm st} }} \right)\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\hbox{f}_2 }} \right)+\left( {1-\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)^{2}} \right)\left( {\frac{\alpha_{\rm b} }{1+\alpha_{\rm b} \left( {\frac{\hbox{q}_{\rm gp}}{\hbox{q}_{\rm ult} }} \right)\hbox{ f}_2 }} \right)} \right]+\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)^{2} \hbox{R}_{{\rm gp}} $$
(B.45)

where Ast = (ksL  d/τult), Bst = (ksL  d/qult)

From Eq. B.32, one gets

$$ \left( {\frac{\hbox{w}_{\rm st} }{\hbox{d}_0 }} \right)= \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{k}_{\rm sL} \hbox{ d}}} \right)\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right) \hbox{f}_{2}=\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm ult} }{\hbox{k}_{\rm sL} \hbox{ d}}} \right)\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)\hbox{f}_2 =\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult}}} \right)\left( {\frac{1}{\hbox{B}_{\rm st} }} \right)\left( {\frac{\hbox{d}}{\hbox{d}_0}} \right) \hbox{f}_{2}. $$
(B.46)

Similarly from Eq. B.15, the settlement, wsL of granular core at the base is

$$ \hbox{w}_{\rm sL}=\frac{\hbox{q}_{\rm gp} \hbox{R}_{{\rm gp}}}{\left( {\hbox{k}_{\rm s,L} \left( {1-\left( {\frac{\hbox{q}_{\rm gp} \hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)} \right)} \right)} $$
(B.47)
$$ \left( {\frac{\hbox{w}_{\rm sL} }{\hbox{d}_0 }} \right)= \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\left( {\frac{\hbox{q}_{\rm ult} }{\hbox{k}_{\rm sL} \hbox{ d}}} \right)\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)\frac{\hbox{R}_{\rm gp} }{\left( {\left( {1-\left( {\frac{\hbox{q}_{\rm gp} \hbox{R}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)} \right)} \right)} $$
(B.48)
$$ \left( {\frac{\hbox{w}_{\rm SL}}{\hbox{d}_0 }} \right)= \left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\left( {\frac{1}{\hbox{B}_{\rm st} }} \right)\left( {\frac{\hbox{d}}{\hbox{d}_0 }} \right)\hbox{J} $$
(B.49)

where

$$ \hbox{J}=\left( {\frac{\hbox{R}_{\rm gp}}{\left( {1-\left( {\frac{\hbox{q}_{\rm gp} }{\hbox{q}_{\rm ult} }} \right)\hbox{R}_{\rm gp} } \right)}} \right) $$
(B.50)

is the settlement influence coefficient.

Appendix C: Numerical Example

Consider a composite foundation consisting of circular short open caisson of length 1.5 m, outer diameter (d0) 1.0 m, and inner diameter (d) 0.85 m sinked in alluvial soil deposit and granular material is filled in and compacted to achieve maximum dry density. The density and frictional angle (ϕ) of soil and granular core material are 18.5 kN/m3 and 30° and 24.0 kN/m3 and 40° respectively. The length to diameter ratio (L/d0) and diameter ratio (d/d0) are 1.5 and 0.85 respectively.

Hatanaka and Uchida (1996) provided a simple correlation between ϕ and SPT Ncor for granular material, which may be expressed as

$$ \phi =\sqrt{20{\hbox {N}}_{\rm cor} }+20 $$
(C.1)

and

$$ \hbox{N}_{\rm cor}= \hbox{C}_{\rm N} \hbox{N}_{\rm F} $$
(C.2)

where

$$ \hbox{C}_{\rm N}= \hbox{Overburden Correction factor} =0.77 \log_{10 }\frac{2000}{\sigma_v^{\prime}} $$
(C.3)

and σ v  = Effective overburden pressure in kN/m2 and N F —Field SPT Value.

Several investigators have correlated the values of modulus of elasticity, Es, with field SPT value, NF. Schmertmann (1970) proposed the following correlation between modulus, Es, of granular material and NF.

$$ \hbox{E} (\hbox{kN}/\hbox{m}^{2})=766\,\hbox{N}_{\rm F } $$
(C.4)

Using Eqs. C.1 to C.4, one gets Es = 3,830 kN/m2 and Egp =  19,150 kN/m2 and hence, ratio (Egp/Es) = 2.67

Referring to Eq. 6 as reproduced below:

$$ \hbox{q}_{\rm ult} = 4\left( {\frac{\hbox{L}}{\hbox{d}_0}} \right) \tau+\left( {1-\left( {\frac{\hbox{d}^{2}}{\hbox{d}_0^{2}}} \right)} \right)\hbox{q}_{\rm st,b}+\left( {\frac{\hbox{d}^{2}}{\hbox{d}_0^{2}}} \right) \hbox{q}_{\rm gp }\hbox{R}_{\rm gp} $$
(C.5)

where\(\tau=\hbox{K}\,\sigma^{\prime}_{\nu}\,\,\hbox{tan}\,\,\Updelta=3.68\,\hbox{kN/m}^{2};\) \(\hbox{q}_{\rm st,b}=\sigma^{\prime}_{\nu}\hbox{N}_{\rm q}=234.6\,\hbox{kN/m}^{2};\) \(\hbox{ q}_{\rm gp}=\sigma^{\prime}_{\nu_{\rm gp}} \hbox{N}_{\rm{q}_{\rm gp}}=1251.9\,\hbox{kN/m}^{2};\) c1 = 4.0 K tan δ = 1.15; and Rgp = exp (c1(L/d0) = 5.65.

Substituting the above values in Eq. C.5, one gets

$$ \hbox{q}_{\rm ult}=314.6\,\hbox{kN/m}^{2}. $$

Using Eq. 16, one gets

$$ \hbox{R} = 3.2 $$

Using Eqs. 10, 2125, and solving numerically, one gets

  • Ratio of percent load carried by casing/steining \(\left({{\hbox{Q}_{\rm st} }/{\hbox{Q}_{\rm ult}}} \right)=93.47\%;\)

  • Normalized settlement of composite foundation \(\left( {{\hbox{w}_{\rm st} }/{\hbox{d}_0 }} \right)= 0.0385;\)

  • Normalized settlement of soil below granular core \(\left( {{\hbox{w}_{\rm sL} }/{\hbox{d}_0 }} \right)= 0.0328.\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali Jawaid, S.M., Madhav, M.R. Analysis of Rigid Short Caisson with Granular Core Incorporating Nonlinear Interface and Base Responses. Geotech Geol Eng 27, 391–406 (2009). https://doi.org/10.1007/s10706-008-9238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-008-9238-8

Keywords

Navigation