Skip to main content

Advertisement

Log in

Analyzing a century of agricultural phosphorus surplus and its long-term key drivers in France

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The increase in agricultural production over the last decades has required an excessive use of nutrients, notably phosphorus (P). The phosphorus surplus (P-surplus) transferred to hydrosystems represents a source of potential harm to the environment, particularly in terms of water pollution (e.g. eutrophication). In this study, a soil surface budget was used to calculate P-surplus as the difference between inputs from mineral fertilizer, manure and atmospheric deposition and outputs represented by various types of harvested crops. P-surplus was quantified yearly between 1920 and 2020 for 90 geographic entities in France, called departments. National mean P-surplus calculated over the 1920–2020 period was 6 kg P per hectare of utilized agricultural area (ha UAA). At the departmental scale, the 1920–2020 average ranged from − 25 to 62 kg P ha UAA−1. Annual imprecisions linked to P-surplus were also quantified for each department as the difference between the 1st and 9th decile of 200 Monte Carlo simulations. The average departmental imprecision was 4 kg P ha UAA−1 year−1. These uncertainties are mainly related to P content in crops (R2 = 0.67). Despite these imprecisions, this study assessed trends in P-surplus and determined key-drivers responsible for surplus changes. Indeed, changes in surplus were similar in all the departments for the period 1920–1974, characterized by surplus increase with a maximum in 1974 and by a surplus decline since then. This decrease was clearly related to the decline of mineral fertilizer use in most departments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashley K, Cordell D, Mavinic D (2011) A brief history of phosphorus: from the philosopher’s stone to nutrient recovery and reuse. Chemosphere 84(6):737–746. https://doi.org/10.1016/j.chemosphere.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  • Auteri N, Saiano F, Scalenghe R (2022) Recycling phosphorus from agricultural streams: grey and green solutions. Agronomy 12:2938. https://doi.org/10.3390/agronomy12122938

    Article  CAS  Google Scholar 

  • Baker A, Ceasar SA, Palmer AJ, Paterson JB, Qi W, Muench SP, Baldwin SA (2015) Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. J Exp Bot 66(12):3523–3540. https://doi.org/10.1093/jxb/erv210

    Article  CAS  PubMed  Google Scholar 

  • Bergström L, Djodjic F, Kirchmann H, Nilsson I, Ulén B (2007) Phosphorus from farmland to water-status, flows and preventive measures in a Nordic perspective. Report Food 21 no. 4/2007

  • Billen G, Lassalett L, Garnier J (2014) A biogeochemical view of the global agrifood system: nitrogen flows associated with protein production, consumption and trade. Global Food Secur 3(3–4):209–219. https://doi.org/10.1016/j.gfs.2014.08.003

    Article  Google Scholar 

  • Bockstaller C, Vertès F, Aarts F, Fiorelli JL, Peyraud JL, Rochette P (2012) Méthodes d’évaluation environnementale et choix des indicateurs. In: Les Flux d’azote Liés Aux Élevages Réduire Les Pertes, Rétablir Les Équilibres, Expertises Collectives : INRA, p 527

  • Bouwman L, Goldewijka KK, Van Der Hoekc KW, Beusena AHW, Van Vuurena DP, Willemsa J, Rufino MC, Stehfesta E (2013) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. PNAS 110(52):20883. https://doi.org/10.1073/pnas.1012878108

    Article  CAS  Google Scholar 

  • Bouwman AF, Beusen AHW, Lassaletta L, van Apeldoorn DF, van Grinsven HJM, Zhang J, van Ittersum MK (2017) Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci Rep 7:40366. https://doi.org/10.1038/srep40366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouraoui F, Grizzetti B, Alberto A (2011) Long term nutrient loads entering European seas (Technical report No. EUR 24726 EN), JRC Scientific ans Technical Reports. JRC, Luxembourg

  • Bureau JC, Thoyer S (2014) La politique agricole commune. La Découverte, Paris

    Book  Google Scholar 

  • Cassman KG, Peng S, Olk DC, Ladha JK, Reichardt W, Dobermann A, Singh U (1998) Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crop Res 56:7–39

    Article  Google Scholar 

  • Childers DL, Corman J, Edwards M, Elser JJ (2011) Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61:117–124. https://doi.org/10.1525/bio.2011.61.2.6

    Article  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19(2):292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  • Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigourous debate about long-term phosphorus security. Sustainability 3(10):2027–2049. https://doi.org/10.3390/su3102027

    Article  Google Scholar 

  • Dobermann A (2005) Nitrogen Use Efficiency—state of the Art. IFA International Workshop on Enhanced-efficiency Fertilizers, Frankfurt, Germany, 28–30 June, 2005. International Fertilizer Industry Association (IFA), Paris. Paper 316. http://digitalcommons.unl.edu/agronomyfacpub/316

  • EC (2000) Directive 2000/60/EC of the European Parliament and the Council establishing a framework for community action in the field of water policy Off J Eur Communities; p 327

  • Edwards AC, Withers PJA (1998) Gestion du phosphore du sol et qualité de l’eau: une perspective britannique. Utilisation Et Gestion Des Sols 14:124–130. https://doi.org/10.1111/j.1475-2743.1998.tb00630.x

    Article  Google Scholar 

  • EEA (European Environment Agency) (2001) Calculation of nutrient surpluses from agricultural sources—statistics spatialisation by means of CORINE land cover—application to the case of nitrogen—European Environment Agency (EEA) (Technical No. 51)

  • EEC (European Economic Community) (1991a) Council Directive 91/271/EEC of 21 May 1991a concerning Urban Waste Water Treatment

  • EEC (European Economic Community) (1991b) Council Directive 91/676/EEC of 12 December 1991b concerning the protection of waters against pollution caused by nitrates from agricultural sources

  • Einarsson R, Pitulia D, Cederberg C (2020) Budgets infranationaux de nutriments pour surveiller les risques environnementaux dans l’agriculture de l’UE: calcul des budgets de phosphore pour 243 régions de l’UE28 à l’aide de données publiques. Nutr Cycl Agroecosyst 117:199–213. https://doi.org/10.1007/s10705-020-10064-y

    Article  Google Scholar 

  • El Wali M, Golroudbary SR, Kraslawski A (2019) Impact of recycling improvement on the life cycle of phosphorus. Chin J Chem Eng 27(5):1219–1229. https://doi.org/10.1016/j.cjche.2018.09.004

    Article  CAS  Google Scholar 

  • EU Nitrogen Expert Panel (2015) Nitrogen use efficiency (NUE)—an indicator for the utilization of nitrogen in agriculture and food systems. Wageningen University, Alterra, PO Box 47, NL-6700 Wageningen, Netherlands

  • Eurostat (2013) Nutrient budgets—methodology and handbook. Version 1.02. Eurostat and OECD, Luxembourg

  • Garnier J, Némery J, Billen G, Théry S (2005) Nutrient dynamics and control of eutrophication in the Marne River system: modelling the role of exchangeable phosphorus. J Hydrol 304(1–4):397–412. https://doi.org/10.1016/j.jhydrol.2004.07.040

    Article  CAS  Google Scholar 

  • Garske B, Stubenrauch J, Ekardt F (2019) Sustainable phosphorus management in European agricultural and environmental law. Rev Eur Comp Int Environ Law 29(1):107–117. https://doi.org/10.1111/reel.12318

    Article  Google Scholar 

  • Hong B, Swaney DP, Howarth RW (2013) Estimating net anthropogenic nitrogen inputs to U.S. watersheds: comparison of methodologies. Environ Sci Technol 47(10):5199–5207. https://doi.org/10.1021/es303437c

    Article  CAS  PubMed  Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In: Nitrogen Cycling in the North Atlantic Ocean and Its Watersheds. Springer, pp 75–139

  • Kratz S, Vogel C, Adam C (2019) Performances agronomiques des engrais à recyclage de phosphore et méthodes pour les prévoir: une revue. Nutr Cycl Agroecosyst 115:1–39. https://doi.org/10.1007/s10705-019-10010-7

    Article  CAS  Google Scholar 

  • Le Noë J, Billen G, Esculiera F, Garnier J (2018a) Long-term socioecological trajectories of agro-food systems revealed by N and P flows in French regions from 1852 to 2014. Agr Ecosyst Environ 265:132–143. https://doi.org/10.1016/j.agee.2018.06.006

    Article  CAS  Google Scholar 

  • Le Noë J, Billen G, Garnier J (2018b) Phosphorus management in cropping systems of the Paris Basin: from farm to regional scale. J Environ Manage 205:18–28. https://doi.org/10.1016/j.jenvman.2017.09.039

    Article  CAS  PubMed  Google Scholar 

  • Lecuyer B, Chatellier V, Daniel K (2013) Le marché des engrais, la volatilité des prix et la dépendance de l’agriculture européenne. hal-02811196

  • Leip A, Achermann B, Billen G et al (2011) Integrating nitrogen fluxes at the European scale. In: The European nitrogen assessment. Cambridge University Press, Cambridge

  • Lemercier B, Gaudin L, Walter C, Aurousseau P, Arrouays D, Schvartz C, Saby NPA, Follain S, Abrassart J (2008) Soil phosphorus monitoring at the regional level by means of a soil test database. Soil Use Manag 24:131–138

    Article  Google Scholar 

  • MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci USA 108(7):3086–3091. https://doi.org/10.1073/pnas.1010808108

    Article  PubMed  PubMed Central  Google Scholar 

  • Némery J, Garnier J (2007) Origin and fate of phosphorus in the Seine watershed (France): agricultural and hydrographic P budgets. J Geophys Res Biogeosci. https://doi.org/10.1029/2006jg000331n/a-n/a

    Article  Google Scholar 

  • OECD (2001) Environmental indicators for agriculture: methods and results, vol 3. OECD, Paris, p 409

    Book  Google Scholar 

  • Oenema O, Kros H, de Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20:3–16

    Article  Google Scholar 

  • Oscar FS, Bouraoui F, Kabbe C, Oenema O, van Dijk KC (2015) Phosphorus management in Europe in a changing world. Ambio 44(Suppl. 2):S180–S192. https://doi.org/10.1007/s13280-014-0613-9

    Article  CAS  Google Scholar 

  • Panagos P, Köningner J, Ballabio C, Liakos L, Muntwyler A, Borrelli P, Lugato E (2022) Improving the phosphorus budget of European agricultural soils. Sci Total Environ 853:158706. https://doi.org/10.1016/j.scitotenv.2022.158706

    Article  CAS  PubMed  Google Scholar 

  • Poisvert C, Curie F, Moatar F (2017) Annual agricultural N surplus in France over a 70-year period. Nutr Cycl Agroecosyst 107:63–78. https://doi.org/10.1007/s10705-016-9814-x

    Article  CAS  Google Scholar 

  • Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3:182–187

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (2009) Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant Soil 322:17–24. https://doi.org/10.1007/s11104-009-0071-5

    Article  CAS  Google Scholar 

  • Roberts TL, Johnston AE (2015) Phosphorus use efficiency and management in agriculture. Resour Conserv Recycl 105:275–281. https://doi.org/10.1016/j.resconrec.2015.09.013

    Article  Google Scholar 

  • Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci 109:6348–6353. https://doi.org/10.1073/pnas.1113675109

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholz RW, Wellmer FW (2015) Losses and use efficiencies along the phosphorus cycle—part 2: understanding the concept of efficiency. Resour Conserv Recycl 105:259–274. https://doi.org/10.1016/j.resconrec.2015.10.003

    Article  Google Scholar 

  • Scoones I, Toulmin C (1998) Soil nutrient balances: what use for policy? Agric Ecosyst Environ 71(1–3):255–267

    Article  Google Scholar 

  • Senthilkumar K, Nesme T, Mollier A, Pellerin S (2012) Regional-scale phosphorus flows and budgets within France: the importance of agricultural production systems. Nutrient Cycl Agroecosyst 92(2):145–159. https://doi.org/10.1007/s10705-011-9478-5

    Article  Google Scholar 

  • Sharpley AN, Foy B, Withers PJA (2000) Practical and innovative measures for the control of agricultural phosphorus losses to water. CAB international, Wallingford

  • Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23(7–8):501–513. https://doi.org/10.1016/j.biotechadv.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  • Schröder JJ, Cordell D, Smit AL, Rosemarin A (2010) Sustainable use of phosphorus. European Union Contract ENV.B.1/ETU/2009/0025. Report 357, Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands, 122 pp

  • Sims JT, Simard RR, Joern BC (1998) Phosphorus loss in agricultural drainage: historical perspective and current research. J Environ Qual 27:277–293

    Article  CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207. https://doi.org/10.1016/j.tree.2008.11.009

    Article  PubMed  Google Scholar 

  • Smol M (2019) The importance of sustainable phosphorus management in the circular economy (CE) model: the Polish case study. J Mater Cycles Waste Manag 21:227–238. https://doi.org/10.1007/s10163-018-0794-6

    Article  CAS  Google Scholar 

  • Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorus limitation of coastal ecosystem processes. Science 299:563–565

    Article  CAS  PubMed  Google Scholar 

  • van der Wal A, de Boer W, Lubbers IM et al (2007) Concentration et distribution verticale du phosphore total du sol en fonction du moment de l’abandon des champs arables. Nutr Cycl Agroecosyst 79:73–79. https://doi.org/10.1007/s10705-007-9097-3

    Article  CAS  Google Scholar 

  • van Dijk KC, Lesschen JP, Oenema O (2016) Phosphorus flows and balances of the European Union Member States. Sci Total Environ 542:1078–1093. https://doi.org/10.1016/j.scitotenv.2015.08.048

    Article  CAS  PubMed  Google Scholar 

  • Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Global Environ Chang 20(3):428–439

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114(1):106–115. https://doi.org/10.1016/j.rse.2009.08.014

    Article  Google Scholar 

  • Watson C, Bengtsson H, Ebbesvik M, Løes AK, Myrbeck A, Salomon E, Schroder J, Stockdale E (2002) A review of farm bilans nutritionnels à l’échelle des exploitations biologiques comme outil de gestion de la fertilité des sols. Utilisation Et Gestion Des Sols 18:264–273. https://doi.org/10.1111/j.1475-2743.2002.tb00268.x

    Article  Google Scholar 

  • Zoboli O, Zessner M, Rechberger H (2016) Supporting phosphorus management in Austria: Potential, priorities and limitations. Sci Total Environ 565:313–323. https://doi.org/10.1016/j.scitotenv.2016.04.171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GH: Conceptualization, methodology, validation, formal analysis, writing-original draft, review and editing. CF: Conceptualization, methodology, validation, formal analysis, writing-review and editing, supervision and funding acquisition. GC.: Validation, writing-review and editing and supervision

Corresponding author

Correspondence to H. Guejjoud.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guejjoud, H., Curie, F. & Grosbois, C. Analyzing a century of agricultural phosphorus surplus and its long-term key drivers in France. Nutr Cycl Agroecosyst (2023). https://doi.org/10.1007/s10705-023-10300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10705-023-10300-1

Keywords

Navigation