Skip to main content

Advertisement

Log in

Methane uptake by saline–alkaline soils with varying electrical conductivity in the Hetao Irrigation District of Inner Mongolia, China

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Soil salinization adversely affects sustainable land use and limitation of greenhouse gas emission. Methane (CH4) uptake and the specific activity of methanotrophs in three saline–alkaline soils—S1, electrical conductivity (EC) 4.80 dS m−1; S2, EC 2.60 dS m−1; and S3, EC 0.74 dS m−1—were observed and measured across crop phenological development in the Hetao Irrigation District of Inner Mongolia, China. There were significant differences in CH4 uptake between the three soil types. The cumulative uptake of CH4 was 97.97 mg m−2, 109.49 mg m−2, and 150.0 mg m−2 in S1, S2, and S3, respectively. Cumulative CH4 uptake was 35%, 35%, and 53% lower in S1 than in S3, and was 27%, 28%, and 19% lower in S2 than in S3 in 2014, 2015, and 2016, respectively. Differences in CH4 uptake were driven by the different specific activities of the methanotrophs in the three soils, of which the key controlling factor was soil EC. The findings demonstrate that saline–alkaline soils with high EC led to low CH4 uptake and thereby significantly increased the total greenhouse effect of CH4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aulakh MS, Khera TS, Doran JW (2000) Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil I. Effect of nitrate and ammoniacal nitrogen. Biol Fertil Soils 31:162–167

    Article  CAS  Google Scholar 

  • Bartlett KB, Bartlett DS, Harriss RC, Sebacher DI (1987) Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4:183–202

    Article  CAS  Google Scholar 

  • Bocanegra-Garcia G, Carrillo-Chavez A (2003) Hydro-geochemical behavior of bicarbonate and sulfate ions leaching from a sulfide-poor silver mine in Central Mexico: potential indicator of acid mine drainage. Bull Environ Contam Toxicol 71:1222–1229

    Article  CAS  Google Scholar 

  • Cai YF, Zheng Y, Bodelier PLE, Conrad R, Jia ZJ (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 7:11728

    Article  CAS  Google Scholar 

  • Conde E, Cardenas M, Ponce-Mendoza A, Luna-Guido ML, Cruz-Mondragon C, Dendooven L (2005) The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and on priming effect in saline–alkaline soil. Soil Biol Biochem 37:681–691

    Article  CAS  Google Scholar 

  • Dalal RC, Allen DE, Livesley SJ, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309:43–76

    Article  CAS  Google Scholar 

  • Dedysh SN (2011) Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2(184):1–15

    Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  CAS  Google Scholar 

  • Deng YC, Liu YQ, Dumont M, Conrad R (2017) Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau. Microb Ecol 73:101–110

    Article  Google Scholar 

  • Dumont MG, Murrell JC (2005) Community-level analysis: key genes of aerobic methane oxidation. Methods Enzymol 397:413–427

    Article  CAS  Google Scholar 

  • Easley RA, Patsavas MC, Byrne RH, Liu X, Feely RA (2013) Spectrophotometric measurement of calcium carbonate saturation states in seawater. Environ Sci Technol 47(3):1468–1477

    CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  CAS  Google Scholar 

  • Geng YB, Luo GQ, Yuan GF (2010) CH4 uptake flux of Leymus chinensis steppe during rapid growth season in Inner Mongolia, China. Sci China Earth Sci 53(7):977–983

    Article  CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. University of New South Wales Press Ltd, Canberra

    Google Scholar 

  • Godsey CB, Pierzynski GM, Mengel DB, Lamond RE (2007) Changes in soil pH, organic carbon, and extractable aluminum from crop rotation and tillage. Soil Sci Soc Am J 71:1038–1044

    Article  CAS  Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241

    Article  CAS  Google Scholar 

  • Hart SC (2006) Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study. Glob Change Biol 12:1032–1046

    Article  Google Scholar 

  • He YB, DeSutter T, Prunty L, Hopkins D, Jia XH, Wysocki DA (2012) Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma 185–186:12–17

    Article  Google Scholar 

  • Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2(6):666–679

    Article  CAS  Google Scholar 

  • Ho A, Lüke C, Frenzel P (2011) Recovery of methanotrophs from disturbance: population dynamics, evenness and functioning. ISME J 5(4):750–758

    Article  CAS  Google Scholar 

  • Ho A, Mo YL, Lee HJ, Sauheitl L, Jia ZJ, Horn MA (2018) Effect of salt stress on aerobic methane oxidation and associated methanotrophs; a microcosm study of a natural community from a non-saline environment. Soil Biol Biochem 125:210–214

    Article  CAS  Google Scholar 

  • Holmes AJ, Costello AM, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132(3):203–208

    Article  CAS  Google Scholar 

  • King GM, Schnell S (1998) Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Appl Environ Microb 64:253–257

    CAS  Google Scholar 

  • Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317

    Article  CAS  Google Scholar 

  • Kolb S, Knief C, Dunfield PF, Conrad R (2005) Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ Microbiol 7:1150–1161

    Article  CAS  Google Scholar 

  • Lim SS, Choi WJ (2014) Changes in microbial biomass, CH4 and CO2 emissions, and soil carbon content by fly ash co-applied with organic inputs with contrasting substrate quality under changing water regimes. Soil Biol Biochem 68:494–502

    Article  CAS  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440

    Article  CAS  Google Scholar 

  • Menyailo OV, Hungate BA, Abraham WR, Conrad R (2008) Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob Change Biol 14:2405–2419

    Article  Google Scholar 

  • Mosier AR, Parton WJ, Valentine DW, Ojima DS, Schimel DS, Heinemeyer O (1997) CH4 and N2O fluxes in Colorado shortgrass steppe. 2. Long-term impact of land use change. Glob Biogeochem Cycles 11:29–42

    Article  CAS  Google Scholar 

  • Myhre G, Shindell D, Bréon FM (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 659–740

    Google Scholar 

  • Pisinaras V, Tsihrintzis VA, Petalas C, Ouzounis K (2010) Soil salinization in the agricultural lands of Rhodope District, northeastern Greece. Environ Monit Assess 166:79–94

    Article  CAS  Google Scholar 

  • Qin R, Wang XF, Liu ST (2005) Advances in saline alkali soil improvement. Contemp Eco-Agric 1:32–34 (in Chinese)

    Google Scholar 

  • Reim A, Lüke C, Krause S, Pratscher J, Frenzel P (2012) One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil. ISME J 6:2128–2139

    Article  CAS  Google Scholar 

  • Saari A, Smolander A, Martikainen PJ (2004) Mathane consumption in a frequently nitrogen-fertilized and limed spruce forest soil after clear-cutting. Soil Use Manag 20:65–73

    Article  Google Scholar 

  • Schlichting E, Blume HP, Stahr K (1995) Bodenkundliches Praktikum. Blackwell, Berlin

    Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  Google Scholar 

  • Serrano-Silva N, Valenzuela-Encinas C, Marsch R, Dendooven L, Alcántara-Hernández RJ (2014) Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils. Extremophiles 18:561–571

    Article  CAS  Google Scholar 

  • Shao R, Xu M, Li RQ, Dai XQ, Liu LX, Yuan Y, Wang HM, Yang FT (2017) Land use legacies and nitrogen fertilization affect methane emissions in the early years of rice field development. Nutr Cycl Agroecosyst 107:369–380

    Article  CAS  Google Scholar 

  • Sitaula BK, Bakken LRR, Abrahamsen G (1995) CH4 uptake by temperate forest soil effect of N input and soil acidification. Soil Biol Biochem 27:871–880

    Article  CAS  Google Scholar 

  • Sjogersten S, Wookey PA (2002) Spatio-temporal variability and environmental controls of methane fluxes at the forest-tundra ecotone in the fennoscandian mountains. Glob Change Biol 8:885–894

    Article  Google Scholar 

  • Sorokin DY, Jones BE, Kuenen JG (2000) An obligate methylotrophic, methane-oxidizing methylomicrobiura species from a highly alkaline environment. Extremophiles 4:145–155

    Article  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  Google Scholar 

  • Tsubota J, Eshinimaey BT, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evolut Microbiol 55:1877–1884

    Article  CAS  Google Scholar 

  • Unteregelsbacher S, Gasche R, Lipp L, Sun W, Kreyling O, Geitlinger H, Kögel-Knabner I, Papen H, Kiese R, Schmid HP, Dannenmann M (2013) Increased methane uptake but unchanged nitrous oxide flux in montane grasslands under simulated climate change conditions. Eur J Soil Sci 64:586–596

    Article  CAS  Google Scholar 

  • Van Zandvoort A, Lapen DR, Clark LD, Flemming C, Craiovan E, Sunohara MD, Boutz R, Gottschall N (2017) Soil CO2, CH4, and N2O fluxes over and between tile drains on corn, soybean, and forage fields under tile drainage management. Nutr Cycl Agroecosyst 109:115–132

    Article  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evolut Microbiol 61:2456–2463

    Article  CAS  Google Scholar 

  • Wang ZQ, Zhu SQ, Yu RP (1993) Chinese salty soil. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Wang YF, Chen H, Zhu QA, Peng CH, Wu N, Yang G, Zhu D, Tian JQ, Tian LX, Kang XM, He YX, Gao YH, Zhao XQ (2014) Soil methane uptake by grasslands and forests in China. Soil Biol Biochem 74:70–81

    Article  CAS  Google Scholar 

  • Whalen SC (2000) Influence of N and non-N salts on atmospheric methane oxidation by upland boreal forest and tundra soils. Biol Fertil Soils 31:279–287

    Article  CAS  Google Scholar 

  • Yan Y, Tian J, Fan MS, Zhang FS, Li XL, Christie P, Chen HQ, Lee JW, Kuzyakov Y, Six J (2012) Soil organic carbon and total nitrogen in intensively managed arable soils. Agric Ecosyst Environ 150:110–120

    Article  Google Scholar 

  • Yang QB, Fan FL, Wang WX, Liang YC, Li ZJ, Cui XA, Wei D (2010) Effects of different long-term fertilizations on community properties and functions of methanotrophs in dark brown soil. Environ Sci 31:2756–2762 (in Chinese)

    Google Scholar 

  • Yang MD, Jiao Y, Li X, Wen HY (2015) Specific activity of methanotrophs in saline–alkaline soils retrieved from a fluorescent quantitative real-time PCR technique. Ecol Environ Sci 24:797–803 (in Chinese)

    Google Scholar 

  • Zhang JF, Li ZJ, Ning TY, Gu SB (2011) Methane uptake in salt-affected soils shows low sensitivity to salt addition. Soil Biol Biochem 43:1434–1439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 41675140, 41565009, 41765010) and the Inner Mongolia Youth Innovative Talent Training Program of Prairie Excellence Project 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Jiao, Y., Yang, M. et al. Methane uptake by saline–alkaline soils with varying electrical conductivity in the Hetao Irrigation District of Inner Mongolia, China. Nutr Cycl Agroecosyst 112, 265–276 (2018). https://doi.org/10.1007/s10705-018-9943-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-018-9943-5

Keywords

Navigation