Skip to main content

Advertisement

Log in

Soil salinization in the agricultural lands of Rhodope District, northeastern Greece

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 23 December 2009

Abstract

The objective of this study was to identify seasonal and spatial trends and soil salinization patterns in a part of Rhodope District irrigated land, northeastern Greece, located east of Vistonis Lagoon. The study area is irrigated from a coastal aquifer, where salt water intrusion occurs because of extensive groundwater withdrawals. Fourteen monitoring sites were established in harvest fields in the study area, where soil samples were collected. Electrical conductivity (ECe), pH, and ion concentrations were determined in the saturated paste extract of the soil samples in the laboratory using standard methods. A clear tendency was observed for ECe to increase from April to September, i.e., within the irrigation period, indicating the effect of saline groundwater to soil. In the last years, the change from moderately sensitive (e.g., corn) to moderately tolerant crops (e.g., cotton) in the south part of the study area indicates the impacts of soil salinity. The study proposes management methods to alleviate this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alva, A. K. & Sumner, M. E. (1989). Alleviation of aluminum toxicity to soybeans by phosphogypsum or calcium sulfate in dilute nutrient solutions. Soil Science, 147, 278–285. doi:10.1097/00010694-198904000-00007.

    Article  CAS  Google Scholar 

  • Alva, A. K., Sumner, M. E. & Miller, W. P. (1990). Reactions of gypsum or phosphogypsum in highly weathered acid subsoils. Soil Science Society of America Journal, 54, 993–998.

    CAS  Google Scholar 

  • Alvarez, J., Hernandez, J. A. & Ortiz, R. (1997). Patterns of spatial and temporal variations in soil salinity: Example of a salt marsh in a semiarid climate. Arid Soil Research and Rehabilitation, 11, 315–329.

    Google Scholar 

  • Brady, N. C. & Wells, R. R. (2001). The nature and properties of soil (13th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Caldwell, A. G., Hutchinson, R. L., Kennedy, C. W. & Jones, J. E. (1990). Byproduct gypsum increases cotton yield at Winnsboro. Louisiana Agriculture, 33, 23–24.

    CAS  Google Scholar 

  • Chang, C., Sommerfeldt, T. G., Carefoot, J. M. & Schaalje, G. B. (1983). Relationships of electrical conductivity with total dissolved salts and cation concentrations of sulfate dominant soil extracts. Canadian Journal of Soil Science, 63, 79–86.

    Article  CAS  Google Scholar 

  • Chhabra, R. (2005). Classification of salt-affected soils. Arid Land Research and Management, 19, 61–79. doi:10.1080/15324980590887344.

    Article  CAS  Google Scholar 

  • Csillag, J., Toth, T. & Redly, M. (1995). Relationships between soil solution composition and soil water content of Hungarian salt-affected soils. Arid Soil Research and Rehabilitation, 9, 245–260.

    CAS  Google Scholar 

  • Darab, K., Csillag, J. & Pinter, I. (1980). Studies on the ion composition of salt solutions and of saturation extracts of salt-affected soils. Geoderma, 23, 95–111. doi:10.1016/0016-7061(80)90013-0.

    Article  CAS  Google Scholar 

  • Diamantis, J. & Petalas, C. (1989). Sea water intrusion into coastal aquifers of Thrace and its impact on the environment. Toxicological and Environmental Chemistry, 20–21, 291–305. doi:10.1080/02772248909357389.

    Google Scholar 

  • EEA (1998). Europe’s environment. The second assessment. Copenhagen: European Environment Agency.

    Google Scholar 

  • European Commission (2003). Extent, causes, pressures, strategies and actions that should be adopted to prevent and to combat salinization and sodification in Europe. Directorate General Environment, Directorate B, Erosion Working Group (Task 5, Topic: Salinization and Sodification).

  • FAO (2000). Management and rehabilitation of salt-affected soils. Accessed 15 June 2007, http://www.fao.org/AG/aGL/agll/spush/topic4.htm.

  • Fowler, D. B. & Hamm, J. W. (1980). Crop response to saline soil conditions in the parkland area of Saskatchewan. Canadian Journal of Soil Science, 60, 439–449.

    Article  CAS  Google Scholar 

  • Gawel, L. J. (2009). A guide for remediation of salt/hydrocarbon impacted soil. Bismarck, ND: North Dakota Industrial Commission, Department of Mineral Resources.

    Google Scholar 

  • Ghassemi, F., Jakeman, A. J. & Nix, H. A. (1995). Salinisation of land and water resources: Human causes, extent, management and case studies. Canberra, Australia: Centre for Resource and Environmental Studies.

    Google Scholar 

  • Hernandez, J. A., Vela De Oro, N. & Ortiz Silla, R. (2004). Electrolytic conductivity of semiarid soils (southeastern Spain) in relation to ion composition. Arid Land Research and Management, 18, 265–281. doi:10.1080/15324980490451348.

    Article  CAS  Google Scholar 

  • Houk, E., Marshall, F. & Schuck, E. (2006). The agricultural impacts of irrigation induced waterlogging and soil salinity in the Arkansas Basin. Agricultural Water Management, 85, 75–183. doi:10.1016/j.agwat.2006.04.007.

    Article  Google Scholar 

  • Journel, A. G. & Huijbregts, C. J. (1978). Mining geostatistics. London: Academic.

    Google Scholar 

  • Kallioras, A., Pliakas, F. & Diamantis, I. (2006). Conceptual model of a coastal aquifer system in northern Greece and assessment of saline vulnerability due to seawater intrusion conditions. Environmental Geology, 51, 349–361. doi:10.1007/s00254-006-0331-0.

    Article  CAS  Google Scholar 

  • Longenecker, D. E. & Lylerly, P. J. (1964). Making soil pastes for salinity analysis: A reproducible capillary procedure. Soil Science, 97, 268–275. doi:10.1097/00010694-196404000-00008.

    Article  CAS  Google Scholar 

  • Maas, E. V. & Grattan, S. R. (1999). Crop yield as affected by salinity. Agricultural drainage. Agronomy Monograph, 38, 55–108.

    Google Scholar 

  • Maas, E. V. & Hoffman, G. J. (1977). Crop salt tolerance—current assessment. Journal of Irrigation and Drainage Engineering, 103, 115–134.

    Google Scholar 

  • Marion, G. M. & Babcock, K. L. (1976). Predicting specific conductance and salt concentration in dilute aqueous solutions. Soil Science, 122, 181–187. doi:10.1097/00010694-197610000-00001.

    Article  CAS  Google Scholar 

  • Mays, D. A. & Mortvedt, J. J. (1986). Crop response to soil applications of phosphogypsum. Journal of Environmental Quality, 15, 78–81.

    Article  CAS  Google Scholar 

  • McCray, J. M., Sumner, M. E., Radcliffe, D. E. & Clark, R. L. (1991). Soil Ca, Al, acidity and penetration resistance with subsoiling, lime and gypsum treatments. Soil Use and Management, 7, 193–199. doi:10.1111/j.1475-2743.1991.tb00874.x.

    Article  Google Scholar 

  • McMullen, B. (2000). SOILpak for vegetable. Wagga Wagga: NSW Agriculture.

    Google Scholar 

  • National Statistical Service of Greece (1991). Distribution of the country’s area by basic categories of use. Athens: Hellenic Republic, National Statistical Service of Greece (in Greek and in English).

    Google Scholar 

  • National Statistical Service of Greece (2006). Irrigated areas by category of crops and groups of level, semi-mountainous and mountainous communes. Athens: Hellenic Republic, National Statistical Service of Greece (in Greek and in English).

    Google Scholar 

  • Oldeman, L. R., Hakkeling, R. T. A. & Sombroek, W. G. (1991). World map of the status of human-induced soil degradation—an explanatory note. Wageningen: ISRIC.

    Google Scholar 

  • Petalas, C. & Diamantis, I. (1999). Origin and distribution of saline groundwaters in the Miocene aquifer system in coastal Rhodope area, Thrace—NE Greece. Hydrogeology Journal, 7, 305–316. doi:10.1007/s100400050204.

    Article  Google Scholar 

  • Petalas, C., & Lamprakis, N. (2006). Simulation of intense salinization phenomena in coastal aquifers—the case of the coastal aquifers of Thrace. Journal of Hydrology, 324, 51–64. doi:10.1016/j.jhydrol.2005.09.031.

    Article  Google Scholar 

  • Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved salts, p. 417–436. In D. L. Sparks, et al. (Ed.), Methods of soil analysis (pp. 439–449). Part 3. SSSA Book series No. 5. Madison, WI: ASA and SSSA.

    Google Scholar 

  • Rhoades, J. D., Manteghi, N. A., Shouse, P. J., & Alves, W. J. (1989). Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Science Society of America Journal, 53, 428–433.

    Article  Google Scholar 

  • Richards, L. A. (1974). Diagnostico y rehabilitacion de suelos salinos y alkalios. Mexico: Limusa.

    Google Scholar 

  • Simon, M., Cabezas, I., & Martinez, P. (1994). A new method for estimate of dissolved salts in saturation extracts of soil from electrical conductivity. European Journal of Soil Science, 45, 153–157. doi:10.1111/j.1365-2389.1994.tb00496.x.

    Article  CAS  Google Scholar 

  • Sonneveld, C., & Van Den Ende, J. (1971). Soil analysis by means of a 1:2 volume extract. Plant and Soil, 35, 505–516. doi:10.1007/BF01372683.

    Article  CAS  Google Scholar 

  • Sposito, G. (1984). The future of an illusion: Ion activities in soil solutions. Soil Science Society of America Journal, 48, 531–536.

    Article  CAS  Google Scholar 

  • Sumner, M. E. (1990). Gypsum as an amendment for the subsoil acidity syndrome. Florida Institute of Phosphate Research, Final Report, Project 83-01-024R.

  • Tanji, K. K. (1990). Agricultural salinity assessment and management. New York: American Society of Civil Engineers.

    Google Scholar 

  • Tanji, K. K., & Kielen, N. C. (2002). Irrigation and drainage paper 61. Rome: Food and Agriculture Organization.

    Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677. doi:10.1038/nature01014.

    Article  CAS  Google Scholar 

  • Timpson, M. E., & Richardson, J. I. (1986). Ionic composition and distribution in saline seeps of southwestern North Dakota, USA. Geoderma, 37, 295–305. doi:10.1016/0016-7061(86)90031-5.

    Article  CAS  Google Scholar 

  • US Salinity Laboratory (1954). Saturated soil paste. Diagnosis and improvement of saline and alkali soils. Agr. Handbook 60. Washington, DC: USDA.

    Google Scholar 

  • USDA (2002). Agricultural uses of phosphogypsum, gypsum, and other industrial byproducts. Accessed 15 June http://www.ars.usda.gov/is/np/agbyproducts/agbychap7.pdf.

  • Van-Camp, L., Bujarrabal, B., Gentile, A. R., Jones, R. J. A., Montanarella, L., Olazabal, C., et al. (2004). Reports of the technical working groups established under the thematic strategy for soil protection. Volume II Erosion. EUR 21319 EN/2. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Vaughn, P. J., Lesch, S. M., Corwin, D. L., & Cone, D. G. (1995). Water content effect on soil salinity prediction: A geostatistical study using cokriging. Soil Science Society of America Journal, 59, 1146–1156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tsihrintzis.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10661-009-1253-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisinaras, V., Tsihrintzis, V.A., Petalas, C. et al. Soil salinization in the agricultural lands of Rhodope District, northeastern Greece. Environ Monit Assess 166, 79–94 (2010). https://doi.org/10.1007/s10661-009-0986-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0986-6

Keywords

Navigation