Skip to main content
Log in

Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoils and plant silicon uptake

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Silicon (Si) enhances the stress resistance of rice plants. Silicon cycling in paddy fields is, however, still poorly studied. We examined relationships between Si forms in topsoil and plant Si uptake for four Vietnamese and three Philippine regions (ten fields per region). Mean rice straw Si concentrations within regions ranged from 3.0 to 8.4 %. For most of the Vietnamese fields they were lower than the critical value of 5.0 %, suggesting Si limitation of plant growth. For fields with low Si availability, straw Si concentrations were positively related to acetate-extractable Si in topsoil (i.e., dissolved and adsorbed Si). Such a relationship was not found for fields with high Si availability, presumably due to a maximum Si uptake capacity of rice plants. Mean annual Si uptake by rice within regions ranged from 0.31 to 1.40 Mg Si ha−1 year−1. They are determined by the continuous supply of plant-available Si during the cropping season and by aboveground biomass production. Weatherable silicate minerals mainly determine spatial differences in supply of plant-available Si. Concentrations of alkaline carbonate-extractable Si in topsoil (an estimate of amorphous Si) largely differed between regions; (regional means of 2.2–16.7 g Si kg−1). The differences in concentrations and amounts in topsoil are not related to phytolith (i.e., amorphous Si in straw) input, presumably due to other yet uncertain factors on carbonate-extractable Si in soil (e.g., differences in phytolith solubility or contribution of non-phytolith sources to Si in the extracts).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barão L, Clymans W, Vandenne F, Meire P, Conley DJ, Struyf E (2014) Pedogenic and biogenic alkaline-extracted silicon distribution along a temperate land-use gradient. Eur J Soil Sci 65:693–705

    Article  Google Scholar 

  • Carey JC, Fulweiler RW (2015) Human appropriation of biogenic silicon—the increasing role of agriculture. Funct Ecol. doi:10.1111/1365-2435.12544

  • Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8:2281–2293

    Article  CAS  Google Scholar 

  • Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68

    Article  CAS  PubMed  Google Scholar 

  • Cornelis JT, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378

    Article  CAS  Google Scholar 

  • DeMaster DJ (1981) The supply and accumulation of silica in the marineenvironments. Geochim Cosmochim Acta 45:1715–1732

    Article  CAS  Google Scholar 

  • Desplanques V, Cary L, Mouret J-C, Trolard F, Bourrié G, Grauby O, Meunier JD (2006) Silicon transfers in a rice field in Camargue (France). J Geochem Explor 88:190–193

    Article  CAS  Google Scholar 

  • Dobermann A, Fairhurst TH (2000) Rice: nutrient disorders and nutrient management. International Rice Research Institute, Los Banos

    Google Scholar 

  • Dobermann A, Fairhurst TH (2002) Rice straw management. Better Crops Int 16:7–11

    Google Scholar 

  • Epstein E (1999) Silicon. Annu rev Plant Physiol Plant Mol Biol 50:641–646

    Article  CAS  PubMed  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206

    Article  CAS  Google Scholar 

  • Guntzer F, Keller C, Meunier J-D (2012a) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Article  Google Scholar 

  • Guntzer F, Keller C, Poulton PR, McGrath SP, Meunier J-D (2012b) Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352:173–184

    Article  CAS  Google Scholar 

  • Haynes RJ (2014) A contemporary overview on silicon availability in agricultural soils. J Plant Nutr Soil Sci 177:831–844

    Article  CAS  Google Scholar 

  • Husnain Wakatsuki T, Setyorini D, Hermansah Sato K, Masunage T (2008) Silica availability in soils and river in two watersheds on Java Island, Indonesia. Soil Sci Plant Nutr 54:916–927

    Article  CAS  Google Scholar 

  • IUSS Working Group (2014) World reference base for soil resources 2014. World Soil Resources Reports No. 106. Food and Agriculture Organization, Rome

  • Klotzbücher T, Marxen A, Vetterlein D, Schneiker J, Türke M, Sinh NV, Manh NH, Chien HV, Marquez L, Villareal S, Bustamante JV, Jahn R (2015a) Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl Ecol 16:665–673

    Article  Google Scholar 

  • Klotzbücher T, Leuther F, Marxen A, Vetterlein D, Horgan F, Jahn R (2015b) Forms and fluxes of potential plant-available silicon in irrigated lowland rice production (Laguna, the Philippines). Plant Soil 393:177–191

    Article  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Kraska JE, Breitenbeck GA (2010) Survey of the silicon status of flooded rice in Louisiana. Agron J 102:523–529

    Article  Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442

    Article  CAS  PubMed  Google Scholar 

  • Marxen A, Klotzbücher T, Jahn R, Kaiser K, Nguyen VS, Schmidt A, Schädler M, Vetterlein D (2016) Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil 398:153–163

    Article  CAS  Google Scholar 

  • Meunier J-D, Keller K, Guntzer F, Riotte J, Braun JJ, Anupama K (2014) Assessment of the 1 % Na2CO3 technique to quantify the phytolith pool. Geoderma 216:30–35

    Article  CAS  Google Scholar 

  • Puppe D, Ehrmann O, Kaczorek D, Wanner M, Sommer M (2015) The protozoic Si pool in temperate forest ecosystems—Quantification, abiotic controls and interactions with earthworms. Geoderma 243–244:196–204

    Article  Google Scholar 

  • Sakurai G, Satake A, Yamaji N, Mitani-Ueno N, Yokozawa M, Feugier FG, Ma JF (2015) In Silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots. Plant Cell Physiol 56:631–639

    Article  PubMed  Google Scholar 

  • Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    Article  CAS  Google Scholar 

  • Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant-available Si in soils: a possible cause of declining rice yields. Commun Soil Sci Plant Anal 28:1245–1252

    Article  CAS  Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde 105:194–202

    Article  CAS  Google Scholar 

  • Settele J, Spangenberg JH, Heong KL, Burkhard B, Bustamante JV, Cabbigat J, Van Chien Ho, Escalada M, Grescho V, Hai Le Huu, Harpke A, Horgan FG, Hotes S, Jahn R, Kühn I, Marquez L, Schädler M, Tekken V, Vetterlein D, Villareal S, Westphal C, Wiemers M (2015) Agricultural landscapes and ecossystem services in South-East-Asia—the LEGATO-Project. Basic Appl Ecol 16:661–664

    Article  Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329

    Article  CAS  Google Scholar 

  • Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochemistry 107:9–18

    Article  CAS  Google Scholar 

  • Tsujimoto Y, Muranaka S, Saito K, Asai H (2014) Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environments across Sub-Sahara Africa. Field Crop Res 155:1–9

    Article  Google Scholar 

  • Vandevenne F, Struyf E, Clymans W, Meire P (2012) Agricultural silica harvest: have humans created a new loop in the global silica cycle? Front Ecol Environ 10:243–248

    Article  Google Scholar 

  • Vandevenne F, Barão L, Ronchi B, Govers G, Meire P, Kelly EF, Struyf E (2015) Silicon pools in human impacted soils of temperate zones. Glob Biogeochem Cycles 29:1439–1450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been sponsored by the LEGATO project of the Federal Mininstry of Education and Research (BMBF; funding codes 01LL0917A and 01LL0917N). We thank Josef Settele for coordinating the LEGATO project. We thank Nguyen Van Sinh, Nguyen Hung Manh, Ho Van Chien, Le Huu Hai Leonardo Marquez, Gertrudo Arida, Martin Wiemers, Markus Franzén, Sylvia Villareal, and Jesus Victor Bustamante for help in field work. Alexandra Boritzki, Claudia Hofmann-Jäniche, Andreas Rämmler, Jutta Fröhlich, Aleksey Prays, Susanne Horka, and Frederic Leuther helped in the laboratory. Finally, we thank two anonymous reviewers for helpful comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Klotzbücher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klotzbücher, T., Marxen, A., Jahn, R. et al. Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoils and plant silicon uptake. Nutr Cycl Agroecosyst 105, 157–168 (2016). https://doi.org/10.1007/s10705-016-9782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-016-9782-1

Keywords

Navigation