Skip to main content
Log in

Adapting feeding methods for less nitrogen pollution from pig and dairy cattle farming: abatement costs and uncertainties

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

This study assesses abatement costs of three measures aimed at reducing nitrogen (N) emissions from livestock production: two protein-adjusted feeding strategies for pigs, and higher-quality forage for dairy cattle. In a partial cost approach, we quantified the effect of different measures on N losses and production costs. We accounted for emissions of NH3, N2O and NO from animal housing, manure storage, manure application, and from soils. Uncertainties related to volatile prices and assumptions about excretion rates and emission factors were assessed in a Monte Carlo simulation. Covering variability of individual input parameters, this uncertainty assessment addresses a fundamental gap in current decision support on N loss reduction measures. For the scenarios investigated, average N abatement costs at farm level were negative and represented net benefits to farmers: In pig husbandry, adapting feeding practices in most individual situations resulted in net benefits, both for three-phase feeding (min −35, max +5, mean −14 €/kg N abated) and optimised single-phase feeding (min −52, max +4, mean −21 €/kg N abated). In dairy production, N abatement by improved forage quality proved invariably more economic than current practice (min −40, max −11, mean −21 €/kg N abated). As shown in this study, N abatement costs can serve as a framework for comparing the cost-effectiveness and feasibility of N loss reduction measures within and between livestock production systems. This is in turn critical when informing practitioners and providing policy support on workable strategies for reducing the N footprint of animal husbandry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarnink A, Verstegen M (2007) Nutrition, key factor to reduce environmental load from pig production. Livest Sci 109(1–3):194–203. doi:10.1016/j.livsci.2007.01.112

    Article  Google Scholar 

  • ALB Hessen (2008) Richtpreise für den Neu- und Umbau landwirtschaftlicher Wirtschaftsgebäude und ländlicher Wohnhäuser: Ausgabe 2009/2010

  • Amon B, Winiwarter W, Anderl M, Baumgarten A, Dersch G, Guggenberger T, Hasenauer H, Kantelhardt J, Kasper M, Kitzler B, Moser T, Pötzelsberger E, Prosenbauer M, Schaller L, Schröck A, Sigmund E, Zechtmeister-Boltenstern E, Zethner G (2014) Farming for a better climate (FarmClim). Design of an inter- and transdisciplinary research project aiming to address the “science-policy gap”. GAIA 23(2):118–124. doi:10.14512/gaia.23.2.9

    Google Scholar 

  • AWI (2015) IDB Deckungsbeiträge und Kalkulationsdaten, Vienna

  • Barnes AP, Toma L (2012) A typology of dairy farmer perceptions towards climate change. Clim Change 112(2):507–522. doi:10.1007/s10584-011-0226-2

    Article  Google Scholar 

  • Benke KK, Hamilton AJ, Lowell KE (2007) Uncertainty analysis and risk assessment in the management of environmental resources. Australas J Environ Manag 14(4):243–249. doi:10.1080/14486563.2007.10648722

    Article  Google Scholar 

  • Bergsdal H, Bohne RA, Brattebø H (2007) Projection of construction and demolition waste in Norway. J Ind Ecol 11(3):27–39. doi:10.1162/jiec.2007.1149

    Article  CAS  Google Scholar 

  • Bittman S, Dedina M, Howard C, Oenema O, Sutton MA (2014) Options for ammonia mitigation: guidance from the UNECE task force on reactive nitrogen, Edinburgh, UK

  • Dalgaard T, Hansen B, Hasler B, Hertel O, Hutchings NJ, Jacobsen BH, Stoumann Jensen L, Kronvang B, Olesen JE, Schjørring JK, Sillebak Kristensen I, Graversgaard M, Termansen M, Vejre H (2014) Policies for agricultural nitrogen management-trends, challenges and prospects for improved efficiency in Denmark. Environ Res Lett 9(11):115002. doi:10.1088/1748-9326/9/11/115002

    Article  Google Scholar 

  • Dämmgen U, Brade W, Schulz J, Kleine Klausing H, Hutchings NJ, Haenel H, Rösemann C (2011) The effect of feed composition and feeding strategies on excretion rates in German pig production. Landbauforsch vTI Agric For Res 61(4):327–342

    Google Scholar 

  • De Cara S, Jayet P-A (2011) Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement. Ecol Econ 70(9):1680–1690. doi:10.1016/j.ecolecon.2011.05.007

    Article  Google Scholar 

  • DLG (2015) Fachinfos Futtermittel Rinder. http://www.dlg.org/fachinfos-rinder.html. Accessed 15 May 2015

  • Döhler H, Eurich-Menden B, Rößler R, Vandré R, Wulf S (2011) Systematic cost-benefit analysis of mitigation measures for agricultural ammonia emissions, supporting national costing analysis, Dessau-Roßlau

  • Dourmad J, Jondreville C (2007) Impact of nutrition on nitrogen, phosphorus, Cu and Zn in pig manure, and on emissions of ammonia and odours. Livest Sci 112(3):192–198. doi:10.1016/j.livsci.2007.09.002

    Article  Google Scholar 

  • Eory V, Topp CF, Moran D (2013) Multiple-pollutant cost-effectiveness of greenhouse gas mitigation measures in the UK agriculture. Environ Sci Policy 27:55–67. doi:10.1016/j.envsci.2012.11.003

    Article  Google Scholar 

  • Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu R, Leach AM, de Vries W (2013) Consequences of human modification of the global nitrogen cycle. Philos Trans R Soc B Biol Sci 368:20130116

    Article  Google Scholar 

  • Ertl P, Knaus W, Steinwidder A (2014) Comparison of zero concentrate supplementation with different quantities of concentrates in terms of production, animal health, and profitability of organic dairy farms in Austria. Org Agric 4(3):233–242. doi:10.1007/s13165-014-0077-z

    Google Scholar 

  • European Environment Agency (EEA) (2013) EMEP/EEA air pollutant emission inventory guidebook 2013. Technical guidance to prepare national emission inventories, Luxembourg

    Google Scholar 

  • Eurostat (2014) Pig farming sector - statistical portrait 2014: Statistics Explained

  • Evans JR, Sperow M, D’Souza GE, Rayburn EB (2007) Stochastic simulation of pasture-raised beef production systems and implications for the appalachian cow-calf sector. J Sustain Agric 30(4):27–51. doi:10.1300/J064v30n04_04

    Article  Google Scholar 

  • Feola G, Binder CR (2010) Towards an improved understanding of farmers’ behaviour: the integrative agent-centred (IAC) framework. Ecol Econ 69(12):2323–2333. doi:10.1016/j.ecolecon.2010.07.023

    Article  Google Scholar 

  • Finneran E, Crosson P, O’Kiely P, Shalloo L, Forristal D, Wallace M (2012) Stochastic simulation of the cost of home-produced feeds for ruminant livestock systems. J Agric Sci 150(01):123–139. doi:10.1017/S002185961100061X

    Article  Google Scholar 

  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B Biol Sci 368(1621):20130164. doi:10.1098/rstb.2013.0164

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226. doi:10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892. doi:10.1126/science.1136674

    Article  CAS  PubMed  Google Scholar 

  • Glenk K, Eory V, Colombo S, Barnes A (2014) Adoption of greenhouse gas mitigation in agriculture: an analysis of dairy farmers’ perceptions and adoption behaviour. Ecol Econ 108:49–58. doi:10.1016/j.ecolecon.2014.09.027

    Article  Google Scholar 

  • Gruber L, Pötsch EM (2006) Calculation of nitrogen excretion of dairy cows in Austria. Die Bodenkult 57(2):65–72

    CAS  Google Scholar 

  • Gruber L, Steinwidder A, Stefanon B, Steiner B, Steinwender R (1999) Influence of grassland management in Alpine regions and concentrate level on N excretion and milk yield of dairy cows. Livest Prod Sci 61(2–3):155–170. doi:10.1016/S0301-6226(99)00065-2

    Article  Google Scholar 

  • Hörtenhuber S, Lindenthal T, Amon B, Markut T, Kirner L, Zollitsch W (2010) Greenhouse gas emissions from selected Austrian dairy production systems-model calculations considering the effects of land use change. Renew Agric Food Syst 25(04):316–329

    Article  Google Scholar 

  • Hörtenhuber SJ, Lindenthal T, Zollitsch W (2011) Reduction of greenhouse gas emissions from feed supply chains by utilizing regionally produced protein sources: the case of Austrian dairy production. J Sci Food Agric 91(6):1118–1127. doi:10.1002/jsfa.4293

    Article  PubMed  Google Scholar 

  • IPCC (2006a) IPCC guidelines for national greenhouse gas inventories: volume 4, chapter 10—emissions from livestock and manure management

  • IPCC (2006b) IPCC guidelines for national greenhouse gas inventories: volume 1, chapter 3—uncertainties

  • Jongebreur AA, Monteny GJ, Ogink N (2005) Livestock production and emissions of volatile gases. In: Kuczynski T, Dämmgen U, Webb J, Myczko A (eds) Emissions from European agriculture. Wageningen Academic Publishers, Wageningen, pp 19–34

    Google Scholar 

  • Klimont Z, Brink C (2004) Modelling of emissions of air pollutants and greenhouse gases from agricultural sources in Europe: Interim report IR-04-048, Laxenburg

  • Kornegay ET, Harper AF (1997) Environmental nutrition: nutrient management strategies to reduce nutrient excretion of swine. Prof Anim Sci 13(3):99–111

    Google Scholar 

  • Landesbetrieb Landwirtschaft Hessen (2012) Futterberehnungsprogramm für Schweine in Anlehnung an die GfE- und DLG-Versorgungsempfehlungen von 2006, 2008 und 2010

  • LKÖ (2013) Agrarindex Monatswerte. Austrian Chamber of Agriculture. https://www.lko.at/media.php?filename=download%3D%2F2014.12.29%2F1419858751982163.pdf&rn=Agrarindex%201995%3D100%20%28Monatswerte%29.pdf. Accesssed 06 March 2015

  • Lovett DK, Shalloo L, Dillon P, O’Mara FP (2008) Greenhouse gas emissions from pastoral based dairying systems: the effect of uncertainty and management change under two contrasting production systems. Livest Sci 116(1–3):260–274. doi:10.1016/j.livsci.2007.10.016

    Article  Google Scholar 

  • MacLeod M, Moran D, Eory V, Rees RM, Barnes A, Topp CF, Ball B, Hoad S, Wall E, McVittie A, Pajot G, Matthews R, Smith P, Moxey A (2010) Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agric Syst 103(4):198–209. doi:10.1016/j.agsy.2010.01.002

    Article  Google Scholar 

  • Marston SP, Clark GW, Anderson GW, Kersbergen RJ, Lunak M, Marcinkowski DP, Murphy MR, Schwab CG, Erickson PS (2011) Maximizing profit on New England organic dairy farms: an economic comparison of 4 total mixed rations for organic Holsteins and Jerseys. J Dairy Sci 94(6):3184–3201. doi:10.3168/jds.2010-3778

    Article  CAS  PubMed  Google Scholar 

  • Morel P, Sirisatien D, Wood GR (2012) Effect of pig type, costs and prices, and dietary restraints on dietary nutrient specification for maximum profitability in grower-finisher pig herds: a theoretical approach. Livest Sci 148(3):255–267. doi:10.1016/j.livsci.2012.06.015

    Article  Google Scholar 

  • Moser T, Kantelhardt J, Schaller L, Amon B, Zechmeister-Boltenstern S, Kaspar M, Hasenauer H, Pötzelsberger E, Kitzler B, Winiwarter W, Schröck A, Zethner G, Anderl M, Baumgarten A, Dersch G, Prosenbauer M (2013) Economic assessment in the ACRP-Project FarmCLIM. In: Proceedings of the ÖGA 2013 (23.ÖGA-Jahrestagung), pp 141–142

  • Nahm KH (2002) Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Crit Rev Environ Sci Technol 32(1):1–16. doi:10.1080/10643380290813435

    Article  CAS  Google Scholar 

  • Newell Price JP, Harris D, Taylor M, Williams JR, Anthony SG, Duethmann D, Gooday RD, Lord EI, Chambers BJ, Chadwick DR, Misselbrook TH (2011) An inventory of mitigation methods and guide to their effects on diffuse water pollution, greenhouse gas emissions and ammonia emissions from agriculture: user guide. Part of Defra Project WQ0106

  • Niemi JK, Sevón-Aimonen M, Pietola K, Stalder KJ (2010) The value of precision feeding technologies for grow-finish swine. Livest Sci 129(1–3):13–23. doi:10.1016/j.livsci.2009.12.006

    Article  Google Scholar 

  • Pomar C, Pomar J, Dubeau F, Joannopoulos E, Dussault J (2014) The impact of daily multiphase feeding on animal performance, body composition, nitrogen and phosphorus excretions, and feed costs in growing-finishing pigs. Anim Int J Anim Biosci 8(5):704–713. doi:10.1017/S1751731114000408

    Article  CAS  Google Scholar 

  • Pötsch EM (2006) Österreichisches Aktionsprogramm zur Umsetzung der EU-Nitratrichtlinie: Aktualisierung der N-Ausscheidungsrate für landwirtschaftliche Nutztiere - Konsequenzen für die Praxis

  • Powell JM (2014) Feed and manure use in low-N-input and high-N-input dairy cattle production systems. Environ Res Lett 9(11):115004. doi:10.1088/1748-9326/9/11/115004

    Article  Google Scholar 

  • Powell JM, MacLeod M, Vellinga TV, Opio C, Falcucci A, Tempio G, Steinfeld H, Gerber P (2013) Feed-milk-manure nitrogen relationships in global dairy production systems. Livest Sci 152(2–3):261–272. doi:10.1016/j.livsci.2013.01.001

    Article  Google Scholar 

  • Reis S, Sutton MA, Howard C (eds) (2015) Costs of ammonia abatement and the climate co-benefits. Springer, Dordrecht

    Google Scholar 

  • Reise C, Musshoff O, Granoszewski K, Spiller A (2012) Which factors influence the expansion of bioenergy? An empirical study of the investment behaviours of German farmers. Ecol Econ 73:133–141. doi:10.1016/j.ecolecon.2011.10.008

    Article  Google Scholar 

  • Rejesus RM, Hornbaker RH (1999) Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois. Agric Ecosyst Environ 75(1–2):41–53. doi:10.1016/S0167-8809(99)00058-4

    Article  Google Scholar 

  • Resch R (2007) Neue Futterwerttabellen für den Alpenraum

  • Rossing W, Zander P, Josien E, Groot J, Meyer BC, Knierim A (2007) Integrative modelling approaches for analysis of impact of multifunctional agriculture: a review for France, Germany and The Netherlands. Agric Ecosyst Environ 120(1):41–57. doi:10.1016/j.agee.2006.05.031

    Article  Google Scholar 

  • Rößler R, Eurich-Menden B, Vandré R, Wulf S, Döhler H (2012) Ammonia emissions: abatement costs for feeding of fattening pigs. Landtechnik 67(1):69–72

    Google Scholar 

  • Roth FX, Schwarz FJ, Stangl GI (eds) (2011) Kirchgeßner Tierernährung: Leitfaden für Studium. DLG-Verlag, Frankfurt am Main, Beratung und Praxis

    Google Scholar 

  • Rotz C (2004) Management to reduce nitrogen losses in animal production. J Anim Sci 82:E119–E137

    PubMed  Google Scholar 

  • Ryan M (2005) Calculating abatement costs. In: Kuczynski T, Dämmgen U, Webb J, Myczko A (eds) Emissions from European agriculture. Wageningen Academic Publishers, Wageningen, pp 253–262

    Google Scholar 

  • Ryan W, Hennessy D, Murphy JJ, Boland TM, Shalloo L (2011) A model of nitrogen efficiency in contrasting grass-based dairy systems. J Dairy Sci 94(2):1032–1044. doi:10.3168/jds.2010-3294

    Article  CAS  PubMed  Google Scholar 

  • Skevas T, Stefanou SE, Lansink AO (2012) Can economic incentives encourage actual reductions in pesticide use and environmental spillovers? Agric Econ 43(3):267–276. doi:10.1111/j.1574-0862.2012.00581.x

    Article  Google Scholar 

  • Spiekers H, Eurich-Menden B, Van den Weghe, Herman (2015) Anders füttern, Ammoniak runter. DLG-Mitteilungen (10):86–88

  • Statistics Austria (2014) Land- und forstwirtschaftliche Erzeugerpreise für Österreich ab 1998, Vienna

  • Steinwidder A, Guggenberger T (2003) Investigations on feed intake and nutrient supply of dairy cows as well as nutrient balance studies on farms in grassland regions of Austria. (in German). Die. Bodenkultur 54(1):49–66

    CAS  Google Scholar 

  • Umweltbundesamt (2014a) Austria’s Informative Inventory Report (IIR) 2014: submission under the UNECE Convention on Long-range Transboundary Air Pollution

  • Umweltbundesamt (2014b) Austria’s National Inventory Report 2014: Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol

  • UNFCCC (2014) National Inventory Submissions 2014—Common Reporting Format (CRF). http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php. Accessed 30 June 2015

  • van Vuuren AM, Pineiro C, van der Hoek K, Oenema O (2015) Economics of Low Nitrogen Feeding Strategies. In: Reis S, Sutton MA, Howard C (eds) Costs of ammonia abatement and the climate co-benefits. Springer, Dordrecht

    Google Scholar 

  • Vibart RE, Washburn SP, Green JT, Benson GA, Williams CM, Pacheco D, Lopez-Villalobos N (2012) Effects of feeding strategy on milk production, reproduction, pasture utilization, and economics of autumn-calving dairy cows in eastern North Carolina. J Dairy Sci 95(2):997–1010. doi:10.3168/jds.2011-4755

    Article  CAS  PubMed  Google Scholar 

  • Winiwarter W, Rypdal K (2001) Assessing the uncertainty associated with national greenhouse gas emission inventories: a case study for Austria. Atmos Environ 35:5425–5440

    Article  CAS  Google Scholar 

  • Yan T, Mayne CS, Gordon FG, Porter MG, Agnew RE, Patterson DC, Ferris CP, Kilpatrick DJ (2010) Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J Dairy Sci 93(6):2630–2638. doi:10.3168/jds.2009-2929

    Article  CAS  PubMed  Google Scholar 

  • Zehetmeier M, Gandorfer M, Hoffmann H, Müller UK, de Boer I, Heißenhuber A (2014) The impact of uncertainties on predicted greenhouse gas emissions of dairy cow production systems. J Clean Prod 73:116–124. doi:10.1016/j.jclepro.2013.09.054

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is a contribution to the International Nitrogen Initiative. It takes advantage of the results of the FarmClim project funded by the Austrian Climate Research Programme (ACRP). The authors wish to thank Maria Lohring for careful language editing. MP acknowledges a scholarship received from the University of Graz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Pierer.

Appendix

Appendix

See Tables 4, 5, 6 and 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierer, M., Amon, B. & Winiwarter, W. Adapting feeding methods for less nitrogen pollution from pig and dairy cattle farming: abatement costs and uncertainties. Nutr Cycl Agroecosyst 104, 201–220 (2016). https://doi.org/10.1007/s10705-016-9767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-016-9767-0

Keywords

Navigation