Skip to main content
Log in

Pre-crop effects on the nutrient composition and utilization efficiency of faba bean (Vicia faba L.) and narrow-leafed lupin (Lupinus angustifolius L.)

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Legumes are key components of cropping systems due to their biological nitrogen fixation ability. The beneficial role of legumes as pre-crops for cereals in cereal-based rotations is well studied, but the evaluation of pre-crops for legumes is not. This study aims to identify which is the best pre-crop for faba bean and narrow-leafed lupin by comparing various nutrient utilization indices for 11 elements. The elemental composition of the two grain legumes was significantly different. There was a significant and positive pre-crop effect of barley, and to a lesser extent oat, on the nutrient composition and indices of both grain legumes, but not on their yield and protein concentration. Barley as a pre-crop was associated with higher concentrations of Mg, Mn and Zn in narrow-leafed lupin seeds and of S in faba bean seeds. Principal component analysis demonstrated similarities in the nutrient uptake of both legumes, and also revealed a consistent association between Fe and Si in narrow-leafed lupin. Use of different nutrient utilization indices allows the detection of pre-crop effects in rotations and the assessment of nutrient cycling of different crop sequences. The mineral utilization index was particularly informative. Attention to the appropriate pre-crop can further increase the sustainability of legume-supported cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adisarwanto T, Knight R (1997) Effect of sowing date and plant density on yield and yield components in the faba bean. Aust J Agric Res 48:1161–1168

    Article  Google Scholar 

  • Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:477–480

    Article  CAS  PubMed  Google Scholar 

  • Alamgir M, McNeill A, Tang C, Marschner P (2012) Changes in soil P pools during legume residue decomposition. Soil Biol Biochem 49:70–77

    Article  CAS  Google Scholar 

  • Avio L, Sbrana C, Giovannetti M (1990) The response of different species of Lupinus to VAM endophytes. Symbiosis (Rehovot) 9:321–323

    Google Scholar 

  • Baloch FS, Karaköy T, Demirbas A, Toklu F, Özkan H, Hatipoglu R (2014) Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turk J Agric For 38:591

    Article  Google Scholar 

  • Bayuelo-Jiménez JS, Ochoa-Cadavid I (2014) Phosphorus acquisition and internal utilization efficiency among maize landraces from the central Mexican highlands. Field Crop Res 156:123–134

    Article  Google Scholar 

  • Berezin I, Mizrachy-Dagry T, Brook E, Mizrahi K, Elazar M, Zhuo S, Saul-Tcherkas V, Shaul O (2008) Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size. Plant Cell Rep 27:939–949

    Article  CAS  PubMed  Google Scholar 

  • Bovill WD, Huang CY, McDonald GK (2013) Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: challenges and directions. Crop Pasture Sci 64:179–198

    Article  Google Scholar 

  • Brear E, Day D, Smith P (2013) Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci 4:359. doi:10.3389/fpls.2013.00359

    Article  PubMed Central  PubMed  Google Scholar 

  • Bues A, Preibel S, Reckling M, Zander P, Kuhlman T, Topp K, Watson C, Lindström K, Stoddard F, Murphy-Bokern D (2013) The environmental role of protein crops in the new common agricultural policy. EU Directorate General for Internal Policies, European Parliament, Brussels. pp 21–98

  • Chalmardi ZK, Abdolzadeh A, Sadeghipour HR (2014) Silicon nutrition potentiates the antioxidant metabolism of rice plants under iron toxicity. Acta Physiol Plant 36:493–502

    Article  CAS  Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and faba bean (Vicia faba L.). Plant Sci 60:215–222

    Article  Google Scholar 

  • Egle K, Wilhelm R, Keller H (2003) Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie 23:511–518

    Article  CAS  Google Scholar 

  • Fu Y, Shen H, Wu D, Cai K (2012) Silicon mediated amelioration of Fe2+ toxicity in rice (Oryza sativa L.) roots. Pedosphere 22:795–802

    Article  CAS  Google Scholar 

  • Galwey NW, Adhikari K, Dracup M, Thomson R (2003) Agronomic potential of genetically diverse narrow-leafed lupins (Lupinus angustifolius L.) with restricted branching. Aust J Agric Res 54:649–661

    Article  Google Scholar 

  • Gan YT, Miller PR, McConkey BG, Zentner RP, Stevenson FC, McDonald CL (2003) Influence of diverse cropping sequences on durum wheat yield and protein in the semiarid northern great plains. Agron J 95:245–252

    Article  Google Scholar 

  • Goyoaga C, Burbano C, Cuadrado C, Romero C, Guillamón E, Varela A, Pedrosa M, Muzquiz M (2011) Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba. J Food Comp Anal 24:391–397

    Article  CAS  Google Scholar 

  • Hartikainen H (1979) Phosphorus and its reactions in the terrestrial soils and lake sediments. J Sci Agric Soc Finl 51:537–623

    CAS  Google Scholar 

  • Hawkesford MJ (2012) Improving nutrient use efficiency in crops. In: eLS. Wiley, Chichester. http://www.els.net

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hocking PJ, Jeffery S (2004) Cluster-root production and organic anion exudation in a group of old-world lupins and a new-world lupin. Plant Soil 258:135–150

    Article  CAS  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horst WJ, Kamh M, Jibrin JM, Chude VO (2001) Agronomic measures for increasing P availability to crops. Plant Soil 237:211–223

    Article  CAS  Google Scholar 

  • Jansson H, Yläranta T, Sillanpää M (1985) Macronutrient contents of different plant species grown side by side. Ann Agric Fenn 24:139–148

    CAS  Google Scholar 

  • Jezierny D, Monsenthin R, Bauer E (2010) The use of grain legumes as a protein source in pig nutrition: a review. Anim Feed Sci Technol 157:111–128

    Article  CAS  Google Scholar 

  • Kamh M, Horst W, Amer F, Mostafa H, Maier P (1999) Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 211:19–27

    Article  CAS  Google Scholar 

  • Kape R, Wex K, Parniske M, Gorge E, Wetzel A, Werner D (1992) Legume root metabolites and VA-mycorrhiza development. J Plant Physiol 141:54–60

    Article  Google Scholar 

  • Kaschuk G, Kuyper T, Leffelaar P, Hungria M, Giller K (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kaschuk G, Leffelaar P, Giller K, Alberton O, Hungria M, Kuyper T (2010) Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biol Biochem 42:125–127

    Article  CAS  Google Scholar 

  • Köpke U, Nemecek T (2010) Ecological services of faba bean. Field Crop Res 115:217–233

    Article  Google Scholar 

  • Lakanen E, Erviö R (1971) A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agral Fenn 123:223–232

    Google Scholar 

  • Lasserre F, Vong PC, Guckert A (2000) Fate of nitrogen and sulphur as affected by the rhizosphere of oilseed rape and barley. Commun Soil Sci Plant Anal 31:173–185

    Article  CAS  Google Scholar 

  • Li L, Li S, Sun J, Zhou L, Bao X, Zhang H, Zhang F (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci 104:11192–11196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lizarazo CI, Lampi AM, Liu J, Sontag-Strohm T, Piironen V, Stoddard FL (2015) Nutritive quality and protein production from grain legumes in a boreal climate. J Sci Food Agric 95:2053–2064

    Article  CAS  PubMed  Google Scholar 

  • López-Bellido F, López-Bellido L, López-Bellido RJ (2005) Competition, growth and yield of faba bean (Vicia faba L.). Eur J Agron 23:359–378

    Article  Google Scholar 

  • Lupwayi NZ, Clayton GW, Hanson KG, Rice WA, Biederbeck VO (2004a) Endophytic rhizobia in barley, wheat and canola roots. Can J Soil Sci 84:37–45

    Google Scholar 

  • Lupwayi NZ, Clayton GW, Hanson KG, Rice WA, Biederbeck VO (2004b) Populations and functional diversity of bacteria associated with barley, wheat and canola roots. Can J Soil Sci 84:245–254

    Article  Google Scholar 

  • Ma JF, Yumaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Higashitami A, Sato K, Takeda K (2003) Genotypic variation in Silicon concentration of barley grain. Plant Soil 249:383–387

    Article  CAS  Google Scholar 

  • Makkar H, Becker K, Hj Abel, Pawelzik E (1997) Nutrient contents, rumen protein degradability and antinutritional factors in some colour- and white-flowering cultivars of Vicia faba beans. J Sci Food Agric 75:511–520

    Article  CAS  Google Scholar 

  • Manske GGB, Ortiz-Monasterio J, van Ginkel RM, Rajaram S, Vlek PLG (2002) Phosphorus use efficiency in tall, semi-dwarf and dwarf near-isogenic lines of spring wheat. Euphytica 125:113–119

    Article  CAS  Google Scholar 

  • Mat Hassan H, Marschner P, McNeill A, Tang C (2012a) Grain legume pre-crops and their residues affect the growth, P uptake and size of P pools in the rhizosphere of the following wheat. Biol Fertil Soils 48:75–85

    Article  Google Scholar 

  • Mat Hassan H, Marschner P, McNeill A, Tang C (2012b) Growth, P uptake in grain legumes and changes in rhizosphere soil P pools. Biol Fertil Soils 48:151–159

    Article  CAS  Google Scholar 

  • Mat Hassan H, Hasbullah H, Marschner P (2013) Growth and rhizosphere P pools of legume—wheat rotations at low P supply. Biol Fertil Soils 49:41–49

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Lambers H, Bolland MD, Veneklaas EJ (2005) Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil 271:175–187

    Article  CAS  Google Scholar 

  • Oba H, Tawaray K, Wagatsuma T (2015) Arbuscular mycorrhizal colonization in Lupinus and related genera. J Soil Sci Plant Nutr 47:685–694

    Article  Google Scholar 

  • Oberson A, Pypers P, Bünemann, E, Frossard E (2011) Management impacts on biological phosphorus cycling in cropped soils. In: Bünemann E, Oberson A, Frossard E (ed), Phosphorus in action, Springer, Berlin, Germany. Soil Biology 26: 431–458

  • Oomah B, Luc G, Leprelle C, Drover J, Harrison J, Olson M (2011) Phenolics, phytic acid, and phytase in Candian-grown low-tannin faba bean (Vicia faba L.) genotypes. J Agric Food Chem 59:3763–3771

    Article  CAS  PubMed  Google Scholar 

  • Ozturk L, Eker S, Torun B, Cakmak I (2005) Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant Soil 269:69–80

    Article  CAS  Google Scholar 

  • Pan XW, Li WB, Zhang QY, Li YH, Liu MS (2008) Assessment on phosphorus efficiency characteristics of soybean genotypes in phosphorus deficient soils. Agric Sci China 7:958–969

    Article  CAS  Google Scholar 

  • Pearse S, Veneklaas E, Cawthray G, Bolland MA, Lambers H (2006) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 288:127–139

    Article  CAS  Google Scholar 

  • Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MDA, Lambers H (2007) Carboxylate composition of root exudates does not relate consistently to a crop species? Ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173:181–190

    Article  CAS  PubMed  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggaard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    Article  CAS  Google Scholar 

  • Perry C, Keeling-Tucker T (1998) Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium. J Inorg Biochem 69:181–191

    Article  CAS  PubMed  Google Scholar 

  • Ponam R, Sharma R, Hnada N, Kaur H, Kaur R, Sirhindi G, Thukral A (2014) Prospects of field crops for phytoremediation of contaminants. In: Ahmad P, Rasool S (eds) Emerging technologies management of crop stress tolerance, 2nd edn. Academic Press, San Diego, pp 449–470

    Chapter  Google Scholar 

  • Probst A, Liu H, Fanjul M, Liao B, Hollande E (2009) Response of Vicia faba L. to metal toxicity on mine tailing susbtrate: geochemical and morphological changes in leaf and root. Environ Exp Bot 66:297–308

    Article  CAS  Google Scholar 

  • Pypers P, Loon L, Diels J, Abaidoo R, Smolders E, Merckx R (2006) Plant-available P for maize and cowpea in P-deficient soils from the Nigerian northern Guinea savanna—comparison of E- and L-values. Plant Soil 283:251–264

    Article  CAS  Google Scholar 

  • Rains DW, Epstein E, Zasoski RJ, Aslam M (2006) Active silicon uptake by wheat. Plant Soil 280:223–228

    Article  CAS  Google Scholar 

  • Ray H, Bett K, Tar’an B, Vandenberg A, Thavarajah D, Warkentin D (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci 54:1698–1708

    Article  Google Scholar 

  • Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant 133:624–636

    Article  CAS  PubMed  Google Scholar 

  • Rose TJ, Wissuwa M (2012) Rethinking internal phosphorus utilization efficiency: a new approach is needed to improve PUE in grain crops. Adv Agron 116:185–217

    Article  CAS  Google Scholar 

  • Sandras O (2005) The N: P stoichiometry of cereal, grain legume and oilseed crops. Field Crop Res 95:13–29

    Article  Google Scholar 

  • Schumacher H, Paulsen HM, Gau AE, Link W, Jürgens HU, Sass O, Dieterich R (2011) Seed protein amino acid composition of important local grain Lupinus angustifolius L., Lupinus luteus L., Pisum sativum L. and Vicia faba L. Plant Breed 130:156–164

    Article  CAS  Google Scholar 

  • Scott D, Wells JS (1969) Leaf orientation in barley, lupin, and lucerne stands. NZ J Bot 7:372–388

    Article  Google Scholar 

  • Sillanpää M, Jansson H (1991) Cadmium and sulphur contents of different plant species grown side by side. Ann Agric Fenn 30:407–413

    Google Scholar 

  • Stelling D, Wang SH, Römer W (1996) Efficiency in the use of phosphorus, nitrogen and potassium in topless faba beans (Vicia faba L.) variability and inheritance. Plant Breed 115:361–366

    Article  CAS  Google Scholar 

  • Stoddard FL, Marshall DR, Ali SM (1993) Variability in grain protein in peas and lentils in Australia. Aust J Agric Res 44:1415–1419

    Article  Google Scholar 

  • Tang C, Robson AD, Dilworth MJ (1990) The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L. New Phytol 114:173–182

    Article  CAS  Google Scholar 

  • Torres A, Frias J, Vidal-Valverde C (2005) Changes in chemical composition of lupin seeds (Lupinus angustifolius) after selective α-galactoside extraction. J Sci Food Agric 85:2468–2474

    Article  CAS  Google Scholar 

  • Unkovich M, Herridge DF, Peoples MB, Boddey RM, Cadisch G, Giller K, Alves B, Chalk PM (2008) Measuring plant associated nitrogen fixation in agricultural systems. ACIAR Monograph No.136. Australian Centre for International Agricultural Research, Canberra, p 258

    Google Scholar 

  • Unkovich M, Baldock J, Forbes M (2010) Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Adv Agron 105:173–219

    Article  Google Scholar 

  • Varo P, Lähelmä O, Nuurtamo M, Saari E, Koivistoinen P (1980) Mineral element composition of Finnish foods. Acta Agric Scand Suppl 22:89–113

    CAS  Google Scholar 

  • Vu D, Armstrong R, Sale PG, Tang C (2010) Phosphorus availability for three crop species as a function of soil type and fertilizer history. Plant Soil 337:497–510

    Article  CAS  Google Scholar 

  • Vuorinen J, Mäkitie M (1955) The method of soil testing in use in Finland. Agrogeol Publ 63:1–44

    Google Scholar 

  • Wang B, Shen J, Tang C, Rengel Z (2008) Root morphology, proton release, and carboxylate exudation in lupin in response to phosphorus deficiency. J Plant Nutr 31:557–570

    Article  Google Scholar 

  • Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    Article  CAS  Google Scholar 

  • Wang Y, Marschner P, Zhang F (2012) Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant Soil 354:283–298

    Article  CAS  Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180:562–574

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crop Res 60:1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2005) Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J Trace Elem Med Biol 18:299–307

    Article  CAS  PubMed  Google Scholar 

  • Yaseen M, Malhi S (2009a) Differential growth response of wheat genotypes to ammonium phosphate and rock phosphate phosphorus sources. J Plant Nutr 32:410–432

    Article  CAS  Google Scholar 

  • Yaseen M, Malhi S (2009b) Variation in yield, phosphorus uptake, and physiological efficiency of wheat genotypes at adequate and stress phosphorus levels in soil. Commun Soil Sci Plan 40:3104–3120

    Article  CAS  Google Scholar 

  • Yläranta T, Sillanpää M (1984) Micronutrient contents of different plant species grown side by side. Ann Agric Fenn 23:158–170

    Google Scholar 

  • Zohlen A, Tyler G (2004) Soluble inorganic tissue phosphorus and calcicole-calcifuge behaviour of plants. Ann Bot 94:427–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Research Foundation, The Agriculture and Forestry Fund, The Future Fund, and the Department of Agricultural Sciences from The Faculty of Agriculture and Forestry—University of Helsinki; The Häme Student Foundation (Hämäläisten ylioppilassäätiö), The August Johannes and Aino Tiura Foundation, The Finnish Cultural Foundation (the Pehr August and Saga Steniuksen Fund, and the A.E. Sandelin Fund), The Ministry of Agriculture and Forestry of Finland (MoniPalko project), the international research project “Legume Futures” funded by the European Union through the Framework 7 Programme (FP7) under Grant Agreement Number 245216 (FP7-KBBE-2009-3), and the FACCE ERA-Net Plus project, Climate Change Adaptability of Cropping and Farming systems for Europe, “Climate CAFE” are acknowledged for funding. We give special thanks to Markku Tykkyläinen, Ritva Löfman, Marjo Kilpinen and Reza Esfahani for technical assistance with field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara I. Lizarazo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizarazo, C.I., Yli-Halla, M. & Stoddard, F.L. Pre-crop effects on the nutrient composition and utilization efficiency of faba bean (Vicia faba L.) and narrow-leafed lupin (Lupinus angustifolius L.). Nutr Cycl Agroecosyst 103, 311–327 (2015). https://doi.org/10.1007/s10705-015-9743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9743-0

Keywords

Navigation