Skip to main content
Log in

Characterization of fecal nitrogen forms produced by a sheep fed with 15N labeled ryegrass

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Little is known about nitrogen (N) forms in ruminant feces, although this information is important to understand N dynamics in agro-ecosystems. We fed 15N labeled ryegrass hay to a sheep and collected 15N labeled feces. Nitrogen forms in the feces were characterized by chemical extractions, solid-state cross polarization 15N nuclear magnetic resonance spectroscopy (SS CP/MAS 15N NMR) and Curie-point pyrolysis–gas chromatography/mass spectrometry (Cp Py-GC/MS). A 4 months incubation experiment was conducted to assess N release from the feces. Half of the fecal N could be ascribed to bacterial and endogenous debris and a third to undigested dietary N. About a tenth of the fecal N was mineralized during the incubation experiment. The 15N abundance of nitrate released during the incubation remained constant and close to the 15N abundance of the total feces N. The NMR analysis of the feces showed that most of the N was present in proteins, while some was present as heterocyclic N, amino acids and ammonium. The Cp Py-GC/MS analysis confirmed the presence of proteins, amino acids and heterocyclic N in the feces. Comparing these results to those obtained from the 15N labeled hay suggests that some N compounds present in the plant were not digested by the animal, and that the animal excreted de novo synthesized N compounds. The low content in ammonium and amino acids, the low rate of N release from these feces during the incubation and the relatively high fecal protein content, particularly the hard to mineralize undigested and microbially bound forms, can explain the low transfer of N from these feces to crops observed in a previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ALP (2006) Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer (Feeding Recommendations and Nutrient Tables for Ruminants). Online-Edition, Forschungsanstalt Agroscope Liebefeld-Posieux ALP, Posieux, Switzerland

  • Berntsen J, Petersen BM, Sørensen P, Olesen JE (2007) Simulating residual effects of animal manures using N-15 isotopes. Plant Soil 290:173–187

    Article  CAS  Google Scholar 

  • Bird PR, Thornton RF (1972) Sulphur metabolism and excretion studies in ruminants. Aust J Biol Sci 25:1299–1311

    PubMed  CAS  Google Scholar 

  • Bosshard C, Frossard E, Dubois D, Mäder P, Manolov I, Oberson A (2008) Incorporation of nitrogen-15-labeled amendments into physically separated soil organic matter fractions. Soil Sci Soc Am J 72:949–959

    Article  CAS  Google Scholar 

  • Bosshard C, Sørensen P, Frossard E, Dubois D, Mäder P, Nanzer S, Oberson A (2009) Nitrogen use efficiency of 15N-labelled sheep manure and mineral fertilizer applied to microplots in long-term organic and conventional cropping systems. Nutr Cycl Agroecosyst 83:271–287

    Article  Google Scholar 

  • Bracewell JM, Haider K, Larter SR, Schulten HR (1989) Thermal degradation relevant to structural studies of humic acid. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. John Wiley & Sons Inc, New York, pp 181–222

    Google Scholar 

  • Calderon FJ, McCarty GW, Reeves JB (2006) Pyrolisis-MS and FT-IR analysis of fresh and decomposed dairy manure. J Anal Appl Pyrolysis 76:14–23

    Article  CAS  Google Scholar 

  • Chiavari G, Galletti GC (1992) Pyrolysis-gas chromatography/mass spectrometry of amino acids. J Anal Appl Pyrolysis 24:123–137

    Article  CAS  Google Scholar 

  • Chiavari G, Gandini N, Russo P, Fabbri D (1998) Characterisation of standard tempra painting layers containing proteinaceous binders by pyrolysis (/methylation)-gas chromatography-mass-spectrometry. Chromatographia 47:420–426

    Article  CAS  Google Scholar 

  • Cusick PR, Kelling KA, Powell JM, Muñoz GR (2006a) Estimates of residual dairy manure nitrogen availability using various techniques. J Environ Qual 35:2170–2177

    Article  PubMed  CAS  Google Scholar 

  • Cusick PR, Powell JM, Kelling KA, Hensler RF, Muñoz GR (2006b) Dairy manure N mineralization estimates from incubations and litterbags. Biol Fertil Soils 43:145–152

    Article  Google Scholar 

  • Franke M, Jandl G, Leinweber P (2006) Organic compounds in re-circulated leachates of aerobic biological treated municipal solid waste. Biodegradation 17:473–485

    Article  PubMed  CAS  Google Scholar 

  • Franke M, Jandl G, Leinweber P (2007) Analytical pyrolysis of re-circulated leachates: towards an improved municipal waste treatment. J Anal Appl Pyrolysis 79:16–23

    Article  CAS  Google Scholar 

  • Goerges T, Ditter K (1998) Improved diffusion technique for 15 N:14 N analysis of ammonium and nitrate from aqueous samples by stable isotope spectrometry. Commun Soil Sci Plant Anal 29:361–368

    Article  CAS  Google Scholar 

  • Gonzalez-Vila FJ, Almendros G, Tinoco P, Rodriguez J (2001) Nitrogen speciation and pyrolytic patterns of N-15-labelled soil and compost fractions. J Anal Appl Pyrolysis 58:329–339

    Article  Google Scholar 

  • Jan MT, Roberts P, Tonheim SK, Jones DL (2009) Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol Biochem 41:2272–2282

    Article  CAS  Google Scholar 

  • Jensen B, Sørensen P, Thomsen IK, Jensen ES, Christensen BT (1999) Availability of nitrogen in N-15-labeled ruminant manure components to successively grown crops. Soil Sci Soc Am J 63:416–423

    Article  CAS  Google Scholar 

  • Knicker H, Lüdemann HD (1995) N-15 and C-13 CPMAS and solution NMR studies of 15-N enriched plant material during 600 days of microbial degradation. Org Geochem 23:329–341

    Article  CAS  Google Scholar 

  • Knicker H, Lüdemann HD, Haider K (1997) Incorporation studies of NH4 + during incubation of organic residues by 15 N-CPMAS-NMR-spectroscopy. Eur J Soil Sci 48:431–441

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:609–625

    Article  Google Scholar 

  • Kreuzer M, Kirchgessner M (1985) Zum Einfluss von Stärkeart und -menge in der Ration auf scheinbare und wahre Verdaulichkeit des Stickstoffs und auf die N-Bilanz beim Schaf. Archiv für Tierernährung 35:723–731

    PubMed  CAS  Google Scholar 

  • Langmeier M, Frossard E, Kreuzer M, Mäder P, Dubois D, Oberson A (2002) Nitrogen fertilizer value of cattle manure applied on soils originating from organic and conventional farming systems. Agronomie 22:789–800

    Article  Google Scholar 

  • Leinweber P, Schulten HR (2000) Nonhydrolyzable forms of soil organic nitrogen: extractability and composition. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 163:433–439

    Article  CAS  Google Scholar 

  • Leinweber P, Jandl G, Eckhardt K-U, Schlichting A, Hofmann D, Schulten H-R (2009) Analytical pyrolysis and soft-ionization mass spectrometry. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. John Wiley & Sons Inc, New York, pp 539–588

    Chapter  Google Scholar 

  • Leng RA, Nolan JV (1984) Symposium: protein nutrition of the lactating dairy cow—nitrogen metabolism in the rumen. J Dairy Sci 67:1072–1089

    Article  PubMed  CAS  Google Scholar 

  • Mason VC (1969) Some observations on the distribution and origin of nitrogen in sheep faeces. J Agric Sci 73:99–111

    Article  Google Scholar 

  • Morier I, Schleppi P, Siegwolf R, Knicker H, Guenat C (2008) N-15 immobilization in forest soil: a sterilization experiment coupled with (15)CPMAS NMR spectroscopy. Eur J Soil Sci 59:467–475

    Article  CAS  Google Scholar 

  • Morvan T, Nicolardot B (2009) Role of organic fractions on C decomposition and N mineralization of animal wastes in soil. Biol Fertil Soils 45:477–486

    Article  Google Scholar 

  • Munson TO, Fetterolf DD (1987) Evidence for the formation of 2, 4-imidazolidinediones and pyrrolidino [1, 2A]-3, 6-piperazinediones in human hair pyrolyzate by pyrolysis-gas chromatography-mass spectrometry-mass spectrometry. J Anal Appl Pyrolysis 11:15–24

    Article  CAS  Google Scholar 

  • Nguyen RT, Harvey HR, Zang X, Van Heemst JDH, Hetényi M, Hatcher PG (2003) Preservation of algaenan and proteinaceous material during the oxic decay of Botrycoccus braunii as revealed by pyrolysis-gas chromatography/mass spectrometry and 13C NMR spectroscopy. Org Geochem 34:483–497

    Article  CAS  Google Scholar 

  • Niemann GJ, Pureveen JBM, Eijkel GB, Poorter H, Boon JJ (1995) Differential chemical allocation and plant adaptation: a Py-MS study of 24 species differing in relative growth rate. Plant Soil 175:275–289

    Article  CAS  Google Scholar 

  • Peersen OB, Wu X, Kustanovich I, Smith SO (1993) Variable-amplitude cross-polarization MAS NMR. J Magn Reson 104:334–339

    Article  CAS  Google Scholar 

  • Poirier N, Sohi S, Gaunt JL, Mahieu N, Randall EW, Powlson DS, Evershed RP (2005) The chemical composition of measurable soil organic matter pools. Org Geochem 36:1174–1189

    Article  CAS  Google Scholar 

  • Pouwels AD, Eijkel GB, Boon JJ (1989) Curie-point pyrolysis capillary gas-chromatography high-resolution mass-spectrometry of microcrystalline cellulose. J Anal Appl Pyrolysis 14:237–280

    Article  CAS  Google Scholar 

  • Powell JM, Wu Z, Kelling K, Cusick P, Muñoz G (2004) Differential nitrogen-15 labeling of dairy manure components for nitrogen cycling studies. Agron J 96:433–441

    Article  Google Scholar 

  • Powell JM, Wattiaux MA, Broderick GA, Moreira VR, Casler MD (2006) Dairy diet impacts on fecal chemical properties and nitrogen cycling in soils. Soil Sci Soc Am J 70:786–794

    Article  CAS  Google Scholar 

  • Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS characterization of forage materials. J Agric Food Chem 39:1426–1437

    Article  CAS  Google Scholar 

  • Reeves JB, Francis BS (1997) Pyrolysis-gas-chromatography-mass-spectrometry for the analysis of forages and by-products. J Anal Appl Pyrolysis 40–41:243–265

    Article  Google Scholar 

  • Rillig MC, Caldwell BA, Wosten HAB, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85:25–44

    Article  CAS  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Schnitzer M, McArthur DFE, Schulten HR, Kozak LM, Huang PM (2006) Long-term cultivation effects on the quantity and quality of organic matter in selected Canadian prairie soils. Geoderma 130:141–156

    Article  CAS  Google Scholar 

  • Schnitzer MI, Monreal CM, Jandl G, Leinweber P, Fransham PB (2007) The conversion of chicken manure to biooil by fast pyrolysis II. Analysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS). J Environ Sci Health Part B-Pestic Contam Agric Wastes 42:79–95

    CAS  Google Scholar 

  • Schröder J (2005) Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment. Bioresour Technol 96:253–261

    Article  PubMed  Google Scholar 

  • Schulten HR (1996) Direct pyrolysis-mass spectrometry of soils: a novel tool in agriculture, ecology, forestry, and soil science. In: Boutton TW, Yamasaki S (eds) Mass spectrometry of soils. Marcel Dekker, New York, pp 373–436

    Google Scholar 

  • Schulten HR, Leinweber P (2000) New insights into organic-mineral particles: composition, properties and models of molecular structure. Biol Fertil Soils 30:399–432

    Article  CAS  Google Scholar 

  • Sørensen P, Jensen ES (1991) Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15 N determination. Anal Chim Acta 252:201–203

    Article  Google Scholar 

  • Sørensen P, Jensen ES (1996) The fate of fresh and stored 15 N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies. Plant Soil 183:213–220

    Article  Google Scholar 

  • Sørensen P, Thomsen IK (2005) Production of nitrogen-15-labeled pig manure for nitrogen cycling studies. Soil Sci Soc Am J 69:1639–1643

    Article  Google Scholar 

  • Sørensen P, Jensen ES, Nielsen NE (1994) Labelling of animal manure nitrogen with 15 N. Plant Soil 162:31–37

    Article  Google Scholar 

  • Sorge C, Schnitzer M, Schulten HR (1993) In-source pyrolysis-field ionization mass-spectrometry and Curie point pyrolysis gas-chromatography mass-spectroscopy of amino-acids in humic substances and soils. Biol Fertil Soils 16:100–110

    Article  CAS  Google Scholar 

  • Van Arendonk JJCM, Niemann GJ, Boon JJ (1997) The effect of enzymatic removal of proteins from plant leaf material as studied by pyrolysis-mass spectrometry: detection of additional protein marker fragment ions. J Anal Appl Pyrolysis 42:33–51

    Article  Google Scholar 

  • van der Walt JG (1993) Nitrogen metabolism of the ruminant liver. Aust J Agric Res 44:381–403

    Article  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Wallace RJ, Newbold CJ, Watt ND, Buchan V, Brown DS (1993) Amino acid composition of degradation-resistant peptides in extracellular rumen fluid of sheep. J Agric Sci 120:129–133

    Article  CAS  Google Scholar 

  • Werner RA, Schmidt HL (2002) The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 61:465–484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the staff of the ETH Research Station Chamau for their support in carrying out the animal experiment. We warmly thank M. Stocki (University of Saskatchewan, Saskatoon) for providing mass spectrometry analyses and T. Flura, F. Mächler, T. Rösch, R. Ruh (all from Group of Plant Nutrition, ETH) and C. Kunz (Group of Animal Nutrition, ETH) for technical assistance in the laboratory. This research was funded by the ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Frossard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosshard, C., Oberson, A., Leinweber, P. et al. Characterization of fecal nitrogen forms produced by a sheep fed with 15N labeled ryegrass. Nutr Cycl Agroecosyst 90, 355–368 (2011). https://doi.org/10.1007/s10705-011-9437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-011-9437-1

Keywords

Navigation