Skip to main content
Log in

Root exudates of a legume tree as a nitrogen source for a tropical fodder grass

  • Original article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Exudation of nitrogenous compounds from the roots of dinitrogen-fixing plants is a potential source of nitrogen for adjacent plants in intercropping systems. We studied (1) the extent of N exudation from the roots of a tropical legume tree Gliricidia sepium (Jacq.) Kunth ex Walp., and (2) the ability of a C4 fodder grass Dichantium aristatum (Poir) C.E. Hubbard and its mycorrhizal symbionts to absorb N from tree exudates in a glasshouse experiment. Root exudates of 15N-labelled trees were collected in hydroponic culture and applied with irrigation water on grass grown in separate pots. During the 10-week experiment, the trees exuded 34.1 ± 5.0 mg of N, which represented 1.7 ± 0.2% of their total N by the end of the experiment. The total amount exuded would have been enough to supply 16% of grass N content by the end of the experiment. The grass, however, absorbed only 3.8–7.5% of 15N in exudates and gained 0.8–1.1% of its N from exudates. The low absorption of exudate N by grass was explained by probable soil microbial immobilisation and by the dilution of exuded N in the substantially larger pool of soil mineral N. A close contact between the root systems of N donor and recipient plants directly or via their mycorrhizal symbionts seems to be a precondition of the apparently direct N transfer earlier observed in field studies of the same soil-plant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayers WA, Thornton RH (1968) Exudation of amino acids by intact and damaged roots of wheat and peas. Plant Soil 28(2):193–207. doi:10.1007/BF01880238

    Article  CAS  Google Scholar 

  • Beer J, Muschler R, Kass DCL, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38(1/3):139–164. doi:10.1023/A:1005956528316

    Article  Google Scholar 

  • Brophy LS, Heichel GH (1989) Nitrogen release from roots of alfalfa and soybean grown in sand culture. Plant Soil 116(1):77–84. doi:10.1007/BF02327259

    Article  CAS  Google Scholar 

  • Cabidoche YM, Guillaume P (1998) A casting method for the three-dimensional analysis of the intraprism structural pores in vertisols. Eur J Soil Sci 49(2):187–196. doi:10.1046/j.1365-2389.1998.00162.x

    Article  Google Scholar 

  • Cliquet J, Murray PJ, Boucaud J (1997) Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytol 137(2):345–349. doi:10.1046/j.1469-8137.1997.00810.x

    Article  CAS  Google Scholar 

  • Courtaillac N, Baran R, Olivier R, Casabianca H, Ganry F (1998) Efficiency of nitrogen fertilizer in the sugarcane-vertisol system in Guadeloupe according to growth and ratoon age of the cane. Nutr Cycl Agroecosyst 52:9–17. doi:10.1023/A:1009765302105

    Article  Google Scholar 

  • Cruz P (2001) Annual dry matter and nutrient yields in a Dichanthium sward with or without Gliricidia shrubs. Proceedings of the XIX International Grassland Congress, 12–23 Feb, São Pedro, Brazil, p 651

  • Daudin D, Sierra J (2008) Spatial and temporal variation of below-ground N transfer from a leguminous tree to an associated grass in an agroforestry system. Agric Ecosyst Environ 126:275–280. doi:10.1016/j.agee.2008.02.009

    Article  CAS  Google Scholar 

  • de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38(8):2092–2103. doi:10.1016/j.soilbio.2006.01.008

    Article  CAS  Google Scholar 

  • Diaz G, Carrillo C, Honrubia M (2003) Differential responses of ectomycorrhizal fungi to pesticides in pure culture. Cryptogam, Mycol 24(3):199–211

    Google Scholar 

  • Dubach M, Russelle MP (1994) Forage legume roots and nodules and their role in nitrogen transfer. Agron J 86(2):259–266

    Article  Google Scholar 

  • Dulormne M, Sierra J, Nygren P, Cruz P (2003) Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agrofor Syst 59(2):121–129. doi:10.1023/A:1026387711571

    Article  Google Scholar 

  • Fujita K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141(1/2):155–175. doi:10.1007/BF00011315

    Article  CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones DL (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56. doi:10.1016/S0929-1393(96)00126-6

    Article  Google Scholar 

  • Haggar JP, Tanner EVJ, Beer JW, Kass DCL (1993) Nitrogen dynamics of tropical agroforestry and annual cropping systems. Soil Biol Biochem 25(10):1363–1378. doi:10.1016/0038-0717(93)90051-C

    Article  CAS  Google Scholar 

  • He X, Critchley C, Bledsoe CS (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22(6):531–567. doi:10.1080/713608315

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5(7):304–308. doi:10.1016/S1360-1385(00)01656-3

    Article  PubMed  CAS  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137(2):179–203. doi:10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  • Høgh-Jensen H (2006) The nitrogen transfer between plants: an important but difficult flux to quantify. Plant Soil 282(1/2):1–5. doi:10.1007/s11104-005-2613-9

    Article  CAS  Google Scholar 

  • Ishikawa T, Subbarao GV, Ito O, Okada K (2003) Suppression of nitrification and nitrous oxide emission by the tropical grass Brachiaria humidicola. Plant Soil 255:413–419. doi:10.1023/A:1026156924755

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163(3):459–480. doi:10.1111/j.1469-8137.2004.01130.x

    Article  CAS  Google Scholar 

  • Kahiluoto H, Vestberg M (2000) Creation of a non-mycorrhizal control for a bioassay of AM effectiveness 2. Benomyl application and soil sampling time. Mycorrhiza 9(5):259–270. doi:10.1007/PL00009990

    Article  Google Scholar 

  • Kass DCL, Sylvester-Bradley R, Nygren P (1997) The role of nitrogen fixation and nutrient supply in some agroforestry systems of the Americas. Soil Biol Biochem 29(5–6):775–785. doi:10.1016/S0038-0717(96)00269-6

    Article  CAS  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12(4):139–143. doi:10.1016/S0169-5347(97)01001-X

    Article  Google Scholar 

  • Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128(3):305–316. doi:10.1007/s004420100693

    Article  Google Scholar 

  • Mafongoya PL, Giller KE, Palm CA (1998) Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor Syst 38:77–97. doi:10.1023/A:1005978101429

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115(3):495–501. doi:10.1111/j.1469-8137.1990.tb00476.x

    Article  Google Scholar 

  • Motisi N (2005) Rôle de la litière souterraine dans le transfert d’azote dans une culture associée légumineuse herbacée—banane. Mémoire de Master, 2nd edn, INAPG

  • Ofosu-Budu KG, Fujita K, Ogata S (1990) Excretion of ureide and other nitrogenous compounds by the root system of soybean at different growth stages. Plant Soil 128(2):135–142. doi:10.1007/BF00011102

    Article  CAS  Google Scholar 

  • Owen AG, Jones DL (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem 33(4–5):651–657. doi:10.1016/S0038-0717(00)00209-1

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Paynel F, Cliquet J (2003) N transfer from white clover to perennial ryegrass, via exudation of nitrogenous compounds. Agronomie 23(5–6):503–510. doi:10.1051/agro:2003022

    Article  CAS  Google Scholar 

  • Paynel F, Murray PJ, Cliquet J (2001) Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant Soil 229(2):235–243. doi:10.1023/A:1004877214831

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • SAS Institute (1999) SAS user’s guide. Statistics. SAS Inst., Cary

    Google Scholar 

  • Scheublin TR, van Logtestijn RSP, van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95(4):631–638. doi:10.1111/j.1365-2745.2007.01244.x

    Article  CAS  Google Scholar 

  • Sierra J, Nygren P (2005) Role of root inputs from a dinitrogen-fixing tree in soil carbon and nitrogen sequestration in a tropical agroforestry system. Aust J Soil Res 43(5):667–675. doi:10.1071/SR04167

    Article  CAS  Google Scholar 

  • Sierra J, Nygren P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol Biochem 38:1893–1903. doi:10.1016/j.soilbio.2005.12.012

    Article  CAS  Google Scholar 

  • Sierra J, Dulormne M, Desfontaines L (2002) Soil nitrogen as affected by Gliricidia sepium in a silvopastoral system in Guadeloupe, French Antilles. Agrofor Syst 54(2):87–97. doi:10.1023/A:1015025401946

    Article  Google Scholar 

  • Sierra J, Daudin D, Domenach A-M, Nygren P, Desfontaines L (2007) Nitrogen transfer from a legume tree to the associated grass estimated by the isotopic signature of tree root exudates: a comparison of the 15N leaf feeding and natural 15N abundance methods. Eur J Agron 27(2–4):178–186. doi:10.1016/j.eja.2007.03.003

    Article  CAS  Google Scholar 

  • Simard SW, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology, 2nd edn. Springer, Berlin, pp 33–74

    Google Scholar 

  • Snoeck D, Zapata F, Domenach A-M (2000) Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol Agron Soc Environ 4(2):95–100

    CAS  Google Scholar 

  • Somasegaran P, Hoben HJ (1985) Methods in legume—Rhizobium technology. NifTAL project, University of Hawaii, Paia

    Google Scholar 

  • St Clair SB, Lynch JP (2005) Base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. New Phytol 165(2):581–590. doi:10.1111/j.1469-8137.2004.01249.x

    Article  PubMed  CAS  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40(1):30–48. doi:10.1016/j.soilbio.2007.08.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Saint-Ange Sophie and Sylvestre Jacoby-Koaly for their skilful technical assistance during the experiment. We are grateful to the Antillean Research Centre of INRA for providing the framework for the experiment. Contribution of R. Jalonen and P. Nygren was financed by the Academy of Finland (grant 111796) and the contribution of J. Sierra by the Département Environnement et Agronomie of INRA

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riina Jalonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalonen, R., Nygren, P. & Sierra, J. Root exudates of a legume tree as a nitrogen source for a tropical fodder grass. Nutr Cycl Agroecosyst 85, 203–213 (2009). https://doi.org/10.1007/s10705-009-9259-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-009-9259-6

Keywords

Navigation