Skip to main content

Advertisement

Log in

Evaluation of different agronomic strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a simulation model

  • Research Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Winter oilseed rape (OSR) demands high levels of N fertilizer, often exceeding 200 kg N ha−1. Large amounts of residual soil mineral nitrogen (SMN) after harvest are regularly observed, and therefore N leaching during the percolation period over winter is increased. In this study agronomic strategies (fertilization level, crop rotation, tillage intensity) to control nitrate leaching after OSR were investigated by combining field measurements (soil mineral nitrogen, soil water content, crop N uptake) of a 2-year trial and another 5-year field trial with simulation modeling. The crop-soil model uses a daily time step and was built from existing and partly refined submodels for soil water dynamics, mineralization processes, and N uptake. It was used to reproduce the complex processes of the N dynamics and to calculate N concentration in the leachate and total volume of percolation water. Some parameters values were thereby newly identified based on the agreement between measured data and model results. Although SMN in the 60–90 cm layer was overestimated, the model could reproduce the measured data with an acceptable degree of accuracy. Overfertilization of OSR increased N leaching and therefore the precise calculation of N fertilizer doses is a first step towards prevent N leaching. Compared to ploughing, minimum tillage decreased N leaching when winter wheat was grown as the subsequent crop. Volunteer OSR and Phacelia tanacetifolia were grown as catch crops after OSR harvest. N leaching could be decreased especially when Phacelia was grown, but nitrate concentrations in the drainage water were higher and exceeded the European Union (EU) threshold for drinking water when volunteer OSR was grown. The results of this study provide strong evidence that reduced tillage or growing of noncruciferous catch crops decrease N leaching and may be used as an agricultural measure to prevent N pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addiscott TM, Wagenet J (1985) Concepts of solute leaching in soils: a review of modeling approaches. J Soil Sci 36:411–424. doi:10.1111/j.1365-2389.1985.tb00347.x

    Article  CAS  Google Scholar 

  • Aufhammer W, Federolf K-G, Kempf H et al (1989) Variabilitätsursachen und Aussagemöglichkeiten der Nmin-Methode (Variability and significance of the “Nmin-procedure”). Landwirtschaftliche Forsch 42:281–292

    CAS  Google Scholar 

  • Beaudoin N, Saad JK, van Laethem C et al (2005) Nitrate leaching in intensive agriculture in Northern France: effect of farming practices, soils and crop rotations. Agric Ecosyst Environ 111:292–310. doi:10.1016/j.agee.2005.06.006

    Article  CAS  Google Scholar 

  • Catt JA, Howse KR, Christian DG, Lane PW, Harris GL, Goss MJ (2000) Assessment of tillage strategies to decrease nitrate leaching in the Brimstone Farm Experiment, Oxfordshire, UK. Soil Tillage Res 53:185–200. doi:10.1016/S0167-1987(99)00105-1

    Article  Google Scholar 

  • Christen O (2006) Raps in der Fruchtfolge – ist die Grenze der Ausdehnung erreicht? (with english summary). UFOP-Schriften 29, Öl- und Proteinpflanzen. OIL 2005:119–128

    Google Scholar 

  • Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources, factors and mitigation strategies. Nutr Cycl Agroecosyst 46:237–256. doi:10.1023/A:1021471531188

    Article  Google Scholar 

  • Goss MJ, Howse KR, Lane PW, Christian DG, Harris GL (1993) Losses of nitrate nitrogen in water draining from under autumn-sown crops established by direct drilling or mouldboard ploughing. J Soil Sci 44:35–48. doi:10.1111/j.1365-2389.1993.tb00432.x

    Article  CAS  Google Scholar 

  • Gosse G, Cellier P, Denoroy P et al (1999) Water, carbon and nitrogen cycling in a rendzina soil cropped with winter oilseed rape: the Châlons oilseed rape database. Agronomie 19:119–124. doi:10.1051/agro:19990204

    Article  Google Scholar 

  • Hansen S, Jensen HE, Nielsen NE et al (1991) Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fert Res 27:245–259. doi:10.1007/BF01051131

    Article  CAS  Google Scholar 

  • Jansson PE, Haldin S (1980) Soil water and heat model. Technical description. Technical Report 26, 1980. Swedish Coniferious Forest Project, Department of Ecology and Environment Research, Swedish University of Agricultural Science, Uppsala, Sweden

    Google Scholar 

  • Jensen LS, Mueller T, Magid J et al (1997) Temporal variation of C and N mineralization, microbial biomass and extractable organic pools in soil after oilseed rape straw incorporation in the field. Soil Biol Biochem 29:1043–1055. doi:10.1016/S0038-0717(97)00014-X

    Article  CAS  Google Scholar 

  • Justes E, Mary B, Nicolardot B (1999) Comparing the effectiveness of radish cover crop, oilseed rape volunteers and oilseed rape residues incorporation for reducing nitrate leaching. Nutr Cycl Agroecosyst 55:207–220. doi:10.1023/A:1009870401779

    Article  CAS  Google Scholar 

  • Kage H (2000) Simulation modelling for improving nitrogen use efficiency in intensive cropping systems. Habilitationsschrift, University of Hannover. http://deposit.ddb.de/cgi-bin/dokserv?idn=977957020

  • Kage H, Stützel H (1999) HUME: an object oriented component library for generic modular modelling of dynamic systems. In: Donatelli CSM, Villalobos F, Villar JM (eds) Modelling cropping systems, ESA conference, Lleida, June 1999. European Society of Agronomy, Lleida, p 299

    Google Scholar 

  • Kage H, Alt C, Stützel H (2003) Aspects of nitrogen use efficiency of cauliflower I. A simulation modeling based analysis of nitrogen availability under field conditions. J Agric Sci Camb 141:1–16. doi:10.1017/S0021859603003344

    Article  CAS  Google Scholar 

  • Kage H, Kochler M, Stützel H (2004) Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron 20:379–394. doi:10.1016/S1161-0301(03)00061-3

    Article  Google Scholar 

  • Kersebaum KC (2007) Modelling nitrogen dynamics in soil-crop systems with HERMES. Nutr Cycl Agroecosyst 77:36–52. doi:10.1007/s10705-006-9044-8

    Article  Google Scholar 

  • Köhler K, Duynisveld WHM, Böttcher J (2006) Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soil. J Plant Nutr Soil Sci 169:185–195. doi:10.1002/jpln.200521765

    Article  CAS  Google Scholar 

  • La Scala N, Lopesa A, Spokas K, Bolonhezia D, Archer DW, Reicosky DC (2008) Short-term temporal changes of soil carbon losses after tillage described by a first-order decay model. Soil Tillage Res 99:108–1108. doi:10.1016/j.still.2008.01.006

    Article  Google Scholar 

  • Lickfett T (1993) Auswirkungen verminderter Produktionsintensität in zwei Rapsfruchtfolgen auf Elemente des N-Haushalts im System Boden-Pflanze. Dissertation, University of Göttingen

    Google Scholar 

  • Makowski D, Maltas A, Morison M, Reau R (2005) Calculating N fertilizer doses for oil-seed rape using plant and soil data. Agron Sustain Dev 25:159–161. doi:10.1051/agro:2004052

    Article  Google Scholar 

  • Malagoli P, Laine P, Rossato L et al (2005) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N. Ann Bot (Lond) 95:853–861. doi:10.1093/aob/mci091

    Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441. doi:10.1137/0111030

    Article  Google Scholar 

  • Mary B, Beaudoin N, Justes E, Machet JM (1999) Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model. Eur J Soil Sci 50:549–566. doi:10.1046/j.1365-2389.1999.00264.x

    Article  Google Scholar 

  • Monteith JL (1973) Principles of environmental physics. Edward Arnold, London

    Google Scholar 

  • Mueller T, Jensen LS, Magid J et al (1997) Temporal variation of C and N turnover in soil after oilseed rape straw incorporation in the field: simulations with the soil-plant-atmosphere model DAISY. Ecol modell 99:247–262

    Article  CAS  Google Scholar 

  • Nicolardot B, Recous S, Mary B (2001) Simulation of C and N mineralization during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues. Plant Soil 228:83–103. doi:10.1023/A:1004813801728

    Article  CAS  Google Scholar 

  • SAS Institute Inc (1989) SAS/STAT® user’s guide, version 6, 4th edn, vol 2. SAS Institute, Cary, NC

  • Shepherd MA, Sylvester-Bradley R (1996) Effect of nitrogen fertilizer applied to winter oilseed rape (Brassica napus) on soil minerl nitrogen after harvest and on the response of a succeeding crop of winter wheat to nitrogen fertilizer. J Agric Sci Camb 126:63–74

    Article  CAS  Google Scholar 

  • Sieling K, Kage H (2006) N balance as an indicator of N leaching in an oilseed rape—winter wheat—winter barley rotation. Agric Ecosyst Environ 115:261–269. doi:10.1016/j.agee.2006.01.011

    Article  CAS  Google Scholar 

  • Sieling K, Günther-Borstel O, Teebken T et al (1999) Soil mineral N and N net mineralization during autumn and winter under an oilseed rape—winter wheat—winter barley rotation in different crop management systems. J Agric Sci Camb 132:127–137. doi:10.1017/S0021859698006273

    Article  Google Scholar 

  • Smith P, Smith JU, Powlson DS et al (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225. doi:10.1016/S0016-7061(97)00087-6

    Article  Google Scholar 

  • Stockle CO, Martin SA, Campbell GS (1994) CropSyst, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agr Syst 46:335–359

    Article  Google Scholar 

  • Trinsoutrot I, Nicolardot B, Justes E et al (2000) Decomposition in the field of residues of oilseed rape grown at two levels of nitrogen fertilisation. Effects on the dynamics of soil mineral nitrogen between successive crops. Nutr Cycl Agroecosyst 56:125–137. doi:10.1023/A:1009838618133

    Article  CAS  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Google Scholar 

  • Van Genuchten MT, Leij FJ, Yates SR (1991) The RETC code for quantifying the hydraulic functions of unsaturated soils, version 1.0., rep. no. EPA report 600/2-91/065. U.S. Salinity Laboratory, USDA, ARS, Riverside

  • Verberne ELJ, Hassink J, De Willigen P, Groot JJR, van Veen JA (1990) Modelling organic matter dynamics in different soils. Neth J Agric Sci 38:221–238

    CAS  Google Scholar 

  • Wösten JHM, Van Genuchten MT (1988) Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci Soc Am J 52:1762–1770

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Ruediger Stroeh, Mrs. Gunda Schnack, Mrs. Cordula Weise, and Mrs. Kirsten Schulz and for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henke, J., Böttcher, U., Neukam, D. et al. Evaluation of different agronomic strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a simulation model. Nutr Cycl Agroecosyst 82, 299–314 (2008). https://doi.org/10.1007/s10705-008-9192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-008-9192-0

Keywords

Navigation