Skip to main content
Log in

The impact of crop growth sub-model choice on simulated water and nitrogen balances

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

It is the aim of this study to analyse how different crop growth model routines affect the simulation of water flow and nitrogen transport of a crop rotation in agricultural fields. The model system Expert-N is briefly described and used to test the crop growth sub-models against data of a six-year field experiment on sandy soils. Expert-N is a modular soil–plant–atmosphere model system, which comprises different sub-models to simulate one-dimensional vertical transport of water, solute and heat in the unsaturated zone. It includes several sub-models to describe organic matter turnover and has three generic crop growth sub-models. The latter are derived from the crop models CERES, SPASS and SUCROS. Simulations were performed using the different sub-models for each of the cereal crops in the sugar beet, winter wheat, winter barley, winter rye crop rotation. Results show the impact of crop model choice on simulated water balances and turnover of C and N. It is concluded that the simulation of root growth and plant residue mineralisation needs some improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addiscott T.M. and Wagenet R.J. (1985). Concepts of solute leaching in soils: a review of modelling approaches J. Soil Sci. 36: 411–424

    Article  CAS  Google Scholar 

  • Asseng S., van Keulen H. and Stol W. (2000). Performance and application of the APSIM NWHEAT model in the Netherlands. Eur. J. Agron. 12: 37–54

    Article  Google Scholar 

  • Bellochi G., Silvestri N., Mazzoncini M. and Menini S. (2002). Using the CROPSYST model in continuous rainfed maize (Zea mays L.) using alternative management options. Ital. J. Agron. 6: 43–56

    Google Scholar 

  • Berkenkamp A., Priesack E. and Munch J.C. (2002). Modelling the mineralisation of plant residues on the soil surface. Agronomie 22: 711–722

    Article  Google Scholar 

  • Beven K. (2002). Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrol. Process. 16: 189–206

    Article  Google Scholar 

  • Booltink H.W.G., van Alphen B.J., Batchelor W. D., Paz J.O., Stoorvogel J.J. and Vargas R. (2001). Tools for optimizing management of spatially-variable fields. Agric. Syst. 70: 445–476

    Article  Google Scholar 

  • De Willigen P. (1991). Nitrogen turnover in the soil crop system: comparison of fourteen simulation models. Fert. Res. 27: 141–149

    Article  CAS  Google Scholar 

  • Diekkrüger B., Söndgerath D., Kersebaum K.C. and McVoy C.W. (1995). Validity of agroecosystem models. A comparison of results of different models applied to the same data set. Ecol. Model. 81: 3–29

    Article  Google Scholar 

  • DVWK. 1996. Ermittlung der Verdunstung von Land- und Wasserflächen. Merkblätter zur Wasserwirtschaft 238, Wirtschafts- und Verlagsgesellschaft Gas und Wasser, Bonn, Germany

  • Engel T., Klöcking B., Priesack E. and Schaaf T. 1993. Simulationsmodelle zur Stickstoffdynamik. Agrarinformatik 25, Verlag Eugen Ullmer, Stuttgart, Germany

  • Engel Th. and Priesack E. (1993). Expert-N, a building block system of nitrogen models as resource for advice, research, water management and policy. In: Eijsackers H.J.P. and Hamers T. (eds), Integrated Soil and Sediment Research: A Basis for Proper Protection. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 503–507

    Google Scholar 

  • Gayler S., Wang E., Priesack E., Schaaf T. and Maidl F.-X. (2002). Modeling biomass growth, N-uptake and phenological development of potato crop. Geoderma 105: 367–383

    Article  CAS  Google Scholar 

  • Grant R.F. (1995). Dynamics of energy, water, carbon and nitrogen in agricultural ecosystems: simulation and experimental validation. Ecol. Model. 81: 169–181

    Article  CAS  Google Scholar 

  • Hansen S., Jensen H.E., Nielsen N.E. and Svendsen H. (1991). Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fert. Res. 27: 245–259

    Article  CAS  Google Scholar 

  • Hutson J.L. and Wagenet R.J. 1992. LEACHM: Leaching Estimation And Chemistry Model: A process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Version 3.0. Department of Soil, Crop and Atmospheric Sciences, Research Series No. 93-3, Cornell University, Ithaca, NY, USA

  • Huwe B. 1992. Deterministische und stochastische Ansätze zur Modellierung des Stickstoffhaushalts landwirtschaftlich genutzter Flächen auf unterschiedlichem Skalenniveau. Mitteilungen 11, Institut für Wasserbau, Stuttgart, Germany

  • Johnsson H., Bergström L., Jansson P.E. and Paustian K. (1987). Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric. Ecosyst. Environ. 18: 333–356

    Article  Google Scholar 

  • Jones C.A. and Kiniry J.R. (eds) (1986). CERES-Maize. A Simulation Model of Maize Growth and Development. Texas A&M University Press, Temple, TX, USA

    Google Scholar 

  • Kersebaum K.C. , Lorenz K., Reuter H.I. and Wendroth O. (2002). Modeling crop growth and nitrogen dynamics for advisory purposes regarding spatial variability. In: Ahuja L.R., Ma L. and Howell T.A. (eds), Agricultural System Models in Field Research and Technology Transfer. Lewis Publishers, Boca Raton, FL, USA, pp. 229–252

    Google Scholar 

  • McIsaac G., Martin D.L. and Watts D.G. (1985). Users Guide to NITWAT – A Nitrogen and Water Management Model. Agr. Eng. Dpt., University of Nebraska, Lincoln, NA, USA

    Google Scholar 

  • Munch J.C., Berkenkamp A. and Sehy U. (2001). The effect of site specific fertilisation on N 2 O emissions and N-leaching – measurements and simulations. In: Horst W.J. et al. (eds), Plant Nutrition – Food Security and Sustainability of Agro-ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 902–903

    Google Scholar 

  • Nicolardot B. and Molina J.A.E. (1994). C and N fluxes between pools of soil organic matter: model calibration with long-term field experimental data. Soil Biol. Biochem. 26: 245–251

    Article  CAS  Google Scholar 

  • Priesack E., Achatz S. and Stenger R. (2001). Parameterisation of Soil Nitrogen Transport Models by Use of Laboratory and Field Data. In: Shaffer M.J., Ma L. and Hansen S. (eds), Modeling Carbon and Nitrogen Dynamics for Soil Management. CRC Press, Boca Raton, USA, pp. 461–484

    Google Scholar 

  • Priesack E. and Bauer C. (2003). Expert-N Datenmanagement. FAM-Bericht 59, Hieronymus, München, Germany

    Google Scholar 

  • Ritchie J.T. (1991). Wheat phasic development. In: Hanks J. and Ritchie J.T. (eds), Modeling Plant and Soil Systems, Agronomy Monograph 31. ASA-CSSA-SSSA, Madison, WI, USA, pp. 31–54

    Google Scholar 

  • Schaaf T., Priesack E. and Engel T. (1995). Comparing field data from north Germany with simulations of the nitrogen model N-SIM. Ecol. Model. 81: 223–212

    Article  CAS  Google Scholar 

  • Schröder P., Huber B., Olazábal U., Kämmerer A. and Munch J.C. (2002). Land use and sustainability: FAM research network on agro ecosystems. Geoderma 105: 155–166

    Article  Google Scholar 

  • Shaffer M.J., Ma L. and Hansen S. (2001). Modeling Carbon and Nitrogen Dynamics for Soil Management. Lewis Publishers, Boca Raton, FL, USA

    Google Scholar 

  • Šimunek J., Huang, K. and van Genuchten, M.T. 1998. The HYDRUS code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 6.0. Research Report No. 144, U.S. Salinity Laboratory, USDA, ARS, Riverside, CA, USA

  • Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H., Klein-Gunnewiek H., Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thornley J.H.M. and Whitmore A.P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81: 153–225

    Article  Google Scholar 

  • Sperr C., Priesack E. and Engel T. (1993). Expert-N: Aufbau, Bedienung und Nutztungsmöglichkeiten des Prototyps. In: Engel T. and Baldioli M. (eds), Expert-N und Wachstumsmodelle. Referate des Anwenderseminars im März 1993 in Weihenstephan. Agrarinformatik 24, Verlag Eugen Ullmer, Stuttgart, Germany, pp. 41–57

    Google Scholar 

  • Stenger R., Priesack E., Barkle G., Sperr C. (1999). Expert-N A tool for simulating nitrogen and carbon dynamics in the soil-plant-atmosphere system. In: Tomer M., Robinson M., Gielen G. (eds), NZ Land Treatment Collective Proceedings Technical Session 20: Modelling of Land Treatment Systems. New Plymouth, New Zealand, pp. 19–28

    Google Scholar 

  • Stoeckle C.O., Donatelli M. and Nelson R. (2003). CROPSYST, a cropping system simulation model. Eur. J. Agron. 18: 289–307

    Article  Google Scholar 

  • Svendsen H., Hansen S. and Jensen H.E. (1995). Simulation of crop production, water and nitrogen balances in two German agro-ecosystems using the DAISY model. Ecol. Model. 81: 197–212

    Article  CAS  Google Scholar 

  • Vanclooster M., Viaene P., Diels J. and Christiaens K. (1994). WAVE a Mathematical Model for Simulating Water and Agrochemicals in the Soil and Vadose Environment. Reference and User’s Manual (release 2.0). Institute for Land and Water Management, Katholieke Universiteit Leuven, Leuven, Belgium

    Google Scholar 

  • van Ittersum M.K. and Donatelli M. (2003). Modelling cropping systems–highlights of the symposium and preface to the special issues. Eur. J. Agron. 18: 187–197

    Article  Google Scholar 

  • van Laar H.H., Goudriaan J. and van Keulen H. (eds) 1992. Simulation of Crop Growth for Potential and Water-limited Production Situations, as Applied to Spring Wheat. Simulation Reports 27, Wageningen, The Netherlands

  • Wallach D. and Goffinet B. (1989). Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecol. Model. 44: 299–306

    Article  Google Scholar 

  • Wang E. (1997). Development of a Generic Process-oriented Model for Simulation of Crop Growth. Dissertation, Herbert Utz Verlag, München, Germany

    Google Scholar 

  • Wang E. and Engel T. (2000). SPASS: a generic process-oriented crop model with versatile windows interfaces. Environ. Model. Software 15: 179–188

    Article  Google Scholar 

  • Wegehenkel M. (2005). Validation of a soil water balance model using soil water content and pressure head data. Hydrol. Process. 19: 1139–1164

    Article  CAS  Google Scholar 

  • Wegehenkel M. and Mirschel W. 2006. Crop growth, soil water and nitrogen balance simulation on three experimental field plots using the Opus model – a case study. Ecol. Model. 190: 116–132

    Google Scholar 

  • Wegehenkel M., Mirschel W. and Wenkel K.-O. (2004). Prediction of soil water and crop growth dynamics using the agroecosystem models THESEUS and OPUS. J. Plant Nutr. Soil Sci. 167: 736–744

    Article  CAS  Google Scholar 

  • Willmott C.J. (1982). Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 64: 1309–1313

    Article  Google Scholar 

  • Zadoks J.C., Chang T.T. and Konzak C.F. (1974). A decimal code for the growth stages of cereals. Weed Res. 14: 415–421

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a grant from the German Research Foundation (DFG) within the framework of the Collaborative Research Centre 607 “Growth and Parasite Defense: Competition for Resources in Economic Plants from Agronomy and Forestry”. The experimental dataset provided by the Leibniz-Centre for Agricultural Landscape and Land Use Research is gratefully acknowledged. We also thank the anonymous reviewer for his comments that helped to considerably improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckart Priesack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priesack, E., Gayler, S. & Hartmann, H.P. The impact of crop growth sub-model choice on simulated water and nitrogen balances. Nutr Cycl Agroecosyst 75, 1–13 (2006). https://doi.org/10.1007/s10705-006-9006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-006-9006-1

Keywords

Navigation