Skip to main content
Log in

The NDICEA model, a tool to improve nitrogen use efficiency in cropping systems

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The effective management of nitrogen dynamics is essential for cropping systems which have the double objective of achieving acceptable yields and minimizing environmental impact. The decisions to be made are both particularly complex and of great urgency to farmers, including all organic farmers, who rely on organic sources of nitrogen. Models can be useful means of providing a better understanding of the nitrogen dynamics and of supporting decision-making at tactical and strategic levels. This paper presents a model that aims at providing support in the decision-making process based on a target-oriented description of nitrogen dynamics in a cropping system. The NDICEA model describes soil water dynamics, nitrogen mineralization and inorganic nitrogen dynamics in relation to weather and crop demand. Crop yields are put in to the model, resulting in a target-oriented modelling approach which is distinctive from most other models. Parameter calibration is an inherent component of the modelling philosophy and is geared to establishing plot-specific factors. Using both quantitative and visual performance indicators, and different ratios of calibration to validation data, we evaluate the performance of NDICEA based on three treatments obtained from the Müncheberg dataset. Based on a maximum of 3 years of data for calibration, the root mean square error (RMSE) was found to vary between 14 kg N ha−1 and 37 kg N ha−1, and in the majority of cases absolute prediction error was less than 20 kg N ha−1. We introduce a user-friendly version of the model that is aimed at farmers and extension workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison L.E. (1965). Organic carbon. In: Black C.A. (ed). Methods of soil analysis, part 2,. no. 9. Series: Agronomy. American Society of Agronomy, Madison, Wis., pp. 1367–1378

    Google Scholar 

  • Anonymous 1989. Handboek voor de akkerbouw en de groenteteelt in de vollegrond 1989. Publicatie nr 47. Proefstation voor de Akkerbouw en de Groenteteelt in de Vollegrond. Lelystad, The Netherlands

  • Baht K.K.S., Flowers T.H., O’Callaghan J.R. (1980). A model for the simulation of the fate of nitrogen in farm wastes on land application. J. Agric. Sci. 94: 183–193

    Google Scholar 

  • Bouma J., Dekker L.W. (1978). A case study on infiltration into dry clay soil. I. Morphological observations. Geoderma 20: 27–40

    Article  Google Scholar 

  • Bradbury N.J., Whitmore A.P., Hart P.B.S., Jenkinson D.S. (1993). Modelling the fate of nitrogen in crop and soil in the years following application of 15N-labelled fertilizer to winter wheat. J. Agric. Sci. 121: 363–379

    Article  CAS  Google Scholar 

  • Bronswijk J.J.B., Dekkers L.W. and Ritsema C.J. 1990. Preferent transport van water en opgeloste stoffen in de Nederlandse bodem: meer regel dan uitzondering. H2O. 22: 594–597.

  • de Bruin H.A.R. 1987. From Penman to Makkink. In: Hooghart C. (ed.),Evaporation and weather. Proceedings and Information. Comm. Hydrol Res-TNO Proc. Inform. 39: 5–32

  • Brussaard L. (1998). Soil fauna, guilds, functional groups and ecosystem processes. Appl. Soil Ecol. 9: 123–135

    Article  Google Scholar 

  • van der Burgt G.J. 2004. Use of the NDICEA model in analysing nitrogen efficiency. In: Hatch D.J. et al. (eds), Controlling nitrogen flows and losses. Proc 12th Nitrogen Workshop. Wageningen Academic Publishers, Wageningen, pp. 242–243

  • Cassman K.G., Munns D.N. (1980). Nitrogen mineralization as affected by soil moisture, temperature and depth. Soil Sci. Soc. Am. J. 44: 1233–1237

    Article  CAS  Google Scholar 

  • Driessen P.M. (1988). The QLE primer. A first introduction to Quantified Land Evaluation procedures. Department of Soil Science and Geology, Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Ennik G.C. 1960. De concurrentie tussen witte klaver en engels raaigras bij verschillen in lichtintensiteit en vochtvoorziening, Mededeling 109, I.B.S. Wageningen, The Netherlands

  • Goudriaan J. and van Laar H.H. 1994. Modelling potential crop growth processes. Current issues in production ecology, vol. 2. Kluwer, Dordrecht

  • Hassink J., Bouwman I.A., Zwart K.B., Bloem J., Brussaard L. (1993). Relationships between soil texture, soil structure, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma 57: 105–128

    Article  CAS  Google Scholar 

  • Hendriks C.J.M. and Oomen G.J.M. 2000. Mest, stro en voer, het gemengd bedrijf op afstand als optie voor een zelfstandige␣biologische landbouw in de regio West- en Midden-Nederland. Rapport 158, Leerstoelgroep Biologische Bedrijfssystemen/ Afdeling Kennisbemiddeling, Wageningen University, Wageningen, The Netherlands.

  • Hofstad E.G. andSchröder J.J. 2002. Stikstof en fosfaat stromen in de Nederlandse biologische landbouw. Report 48. Plant Research International, Wageningen, The Netherlands

  • Huinink J.T.M. 1998. Neerslag, verdamping en neerslagoverschotten: regionale verschillen binnen Nederland. Informatie-en Kenniscentrum Landbouw (IKC), Ede, The Netherlands

  • Janssen B.H. (1984). A simple method for calculating decomposition and accumulation of ‚young’ soil organic matter. Plant Soil 76: 297–304

    Article  Google Scholar 

  • Janssen B.H. (1996). Nitrogen mineralisation in relation to C:N ratio and decomposability of organic materials. Plant Soil 181: 39–45

    Article  CAS  Google Scholar 

  • Jones J.W., Hoogenboom G., Porter C.H., Boote K.J., Batchelor W.D., Hunt L.A., Wilkens P.W., Singh U., Gijsman A.J., Ritchie J.T. (2003). The DSSAT cropping system model. Eur. J. Agron. 18: 235–265

    Article  Google Scholar 

  • Keating B.A., Carberrya P.S., Hammer G.L., Probert M.E., Robertson M.J., Holzworth D., Huth N.I., Hargreaves J.N.G., Meinke H., Hochman Z., McLeab G., Verburg K., Snow V., Dimes J.P., Silburn M., Wang E., Brown S., Bristow K.L., Asseng S., Chapman S., McCown R.L., Freebairn D.M., Smith C.J. (2003). An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18: 267–288

    Article  Google Scholar 

  • Klepper O., Rouse D.I. (1991). A procedure to reduce parameter uncertainty for complex models by comparison with real system output, illustrated on a potato growth model. Agric. Syst. 36: 375–395

    Article  Google Scholar 

  • Koopmans C.J., Bokhorst J. (2002). Nitrogen mineralization in organic farming systems: a test of the NDICEA model. Agronomie 22: 855–862

    Article  Google Scholar 

  • Mäder P., Fliebach A., Dubois D., Gunst L., Fried P., Niggli U. (2002). Soil fertility and biodiversity in organic farming. Science 296: 1694–1697

    Article  PubMed  Google Scholar 

  • Makkink G.F. (1957). Testing the Penman formula by means of lysimeters. J. Int. Water Eng. 11: 277–288

    Google Scholar 

  • Mayer D.G. (2002). Evolutionary algorithms and agricultural systems. Kluwer, Boston

    Google Scholar 

  • Meynard J.M., Cerf M., Guichard L., Jeuffroy M.-H., Makowski D. (2002). Which decision support tools for the environmental management of nitrogen? Agronomie 22: 817–822

    Article  Google Scholar 

  • van Mil M. 1981. Actual and potential nitrogen fixation in pea and field bean as affected by combined nitrogen. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands

  • Mirschel W., Wenkel K.-O., Wegehenkel M., Kersebaum K.C., Schindler U. and Hecker J.-M. 2006. Müncheberg field trial data set for agro-ecosystem model validation. In: Kersebaum K.C. Hecker J.-M. and Mirschel W. (eds), Modelling water and nutrient dynamics in soil crop systems. Springer, Berlin Heidelberg New York (in press)

  • Mitchell P. and Sheehy J.E. 1996. Comparison of predictions and observations to assess model performance: a method of empirical validation. In: Kropff M.J., Teng P.S., Aggarwal P.K., Bouma J., Bouman B.A. et al. (eds), Applications of systems approaches at field level. Kluwer, Dordrecht, pp. 437-451

  • Oomen G.J.M. (1995). Nitrogen cycling and nitrogen dynamics in ecological agriculture. Biol. Agric. Hortic. 11: 183–192

    Google Scholar 

  • Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. (1986). Numerical recipes: The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Price W.L. (1979). A controlled random search procedure for global optimization. Comput. J. 20: 367–370

    Article  Google Scholar 

  • Rijtema P.E. 1980. Nitrogen emission from grassland farms – a model approach. Technical Bulletin 119. ICW, Wageningen, The Netherlands

  • Rijtema P.E., Kroes J.G. (1991). Some results of nitrogen simulations with the model ANIMO. Fertiliser Res. 27: 189–198

    Article  CAS  Google Scholar 

  • Smith J.U., Bradbury N.J., Addiscott T.M. (1996). SUNDIAL: A PC-based system for simulating nitrogen dynamics in arable land. Agron. J. 88: 38–43

    Article  Google Scholar 

  • Sogaard H.T., Sommer S.G., Hutchings N.J., Huijsmans J.F.M., Bussink D.W., Nicholson F. (2002). Ammonia volatilization from field-applied animal slurry – the ALFAM model. Atmos. Environ. 36: 3309–3319

    Article  CAS  Google Scholar 

  • Verveda H.W. 1983. Opbouw en afbraak van jonge organische stof inde grond en de stikstofhuishouding onder een vierjarige vruchtwisseling met grasgroenbemester. Internal Bulletin 58. Department of Soil Science and Plant Nutrition, Agricultural University, Wageningen, The Netherlands

  • Wallach D., Goffinet B. (1989). Mean squared error of prediction as a criterion for evaluating and comaring system models. Ecol. Modell. 44: 209–306

    Article  Google Scholar 

  • van der Werf W., Leeuwis C. and Rossing W.A.H. 1999. Quality of modelling in fruit research and orchard management: issues for discussion. In: Wagenmakers P.S., van der Werf W. and Blaise Ph. (eds), Proc. 5th Int. Symp. Comput Modell Fruit Res Orchard Manage. Acta Hortic 499: 151–160

  • Willmott C.J. (1982). Some comments on the evaluation of model performance. Bull. Am. Met. Soc. 64: 1309–1313

    Article  Google Scholar 

  • Woli P.B. 2000. Nitrogen and organic matter balances as calculated by the target-oriented models Quadmod PLUS and NDICEA to evaluate crop rotations. MSc Thesis, Dept. Theoretical Production Ecology, Wageningen Agricultural University, The Netherlands.

  • Wösten J.H.M., Bannink M.H. and Beuving J. 1987. Waterretentie doorlatendheidskarakteristieken van boven – en ondergronden in Nederland: de Staringreeks. Rapport 1932. Stiboka, rapport 18 ICW, Wageningen, The Netherlands

  • Yang H.S. 1996. Modelling organic matter mineralization and exploring options for organic matter management in arable farming in northern China. PhD thesis, Wageningen Agricultural University, The Netherlands

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. H. M. van der Burgt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Burgt, G.J.H.M., Oomen, G.J.M., Habets, A.S.J. et al. The NDICEA model, a tool to improve nitrogen use efficiency in cropping systems. Nutr Cycl Agroecosyst 74, 275–294 (2006). https://doi.org/10.1007/s10705-006-9004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-006-9004-3

Keywords

Navigation