Skip to main content

Advertisement

Log in

Effect of collagen damage induced by heat treatment on the mixed-mode fracture behavior of bovine cortical bone under elevated loading rates

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The fracture resistance of bone has been attributed to a competition of sub-micron lengthscale intrinsic mechanisms, including plasticity conferred by collagen stretching and intermolecular sliding and much larger lengthscale extrinsic mechanisms such as crack deflection and bridging. In this study, the contribution of intrinsic toughening mechanisms on the dynamic fracture behavior of bovine cortical bone is investigated. Single edge notched cortical bone specimens were extracted from the mid-diaphysis of a bovine femur with dimensions in accordance with ASTM E399. Four specimen groups are studied, a control group, and groups subjected to two-hour heat treatments of 130 \(^{\circ }\)C, 160 \(^{\circ }\)C and 190 \(^{\circ }\)C, respectively. Using a trypsin-hydroxyproline assay to determine the percent of denatured collagen achieved by each heat treatment, it is shown that the 160 \(^{\circ }\)C and 190 \(^{\circ }\)C groups have accumulated substantial collagen network damage compared to the 130 \(^{\circ }\)C and control groups. Three-point bend drop tower experiments with impact velocities of 1.6m/s. The selected impact velocity results in a nominal stress intensity factor rate of \({\dot{K}}=1.5\times 10^5 MPa \, \, m^{1/2}/s\).Specimen’s speckled surfaces were imaged at 500,000 fps during deformation and post-processed using digital image correlation to determine the in-plane displacement fields. Using an orthotropic material linear elastic fracture mechanics formulation and over-deterministic least-squares analysis, the critical mode-I and mode-II stress intensity factors (i.e., fracture initiation toughness) were determined immediately proceeding fracture. As the heat treatment temperature increases (and the damaged collagen content increases), a weak but decreasing trend in fracture toughness was observed. Of particular note, for the 160 \(^{\circ }\)C and 190 \(^{\circ }\)C heat treatments, it was observed that the mode-II fracture initiation toughness is larger than the mode-I fracture initiation toughness. Regardless of the heat treatment condition, the mode-II fracture initiation toughness was comparatively less affected. For the specific case of Haversian bovine cortical bone whose collagen network has been denatured using heat treatment, a trend is observed pointing to collagen primarily conferring mode-I fracture initiation toughness, opposed to mode-II fracture initiation toughness, for the transverse fracture orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adel AA-W, Khurshid A, Vadim VS (2011) Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. J Mech Behav Biomed Mater 4(5):807–820

    Article  Google Scholar 

  • Ares JR, Ravi-Chandar K (1986) On crack-tip stress state: an experimental evaluation of three-dimensional effects. Int J Solids Struct 22(2):121–134

    Article  Google Scholar 

  • Atharva AP, Wu P-C, Zafer E, Grazyna ES, Ani U, Mishaela R, Deepak V (2015) A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater 52:120–130

    Article  Google Scholar 

  • Behiri JC, Bonfield W (1980) Crack velocity dependence of longitudinal fracture in bone. J Mater Sci 15(7):1841–1849

    Article  Google Scholar 

  • Behiri JC, Bonfield W (1984) Fracture mechanics of bone—the effects of density, specimen thickness and crack velocity on longitudinal fracture. J Biomech 17(1):25–34

    Article  Google Scholar 

  • Behiri JC, Bonfield W (1989) Orientation dependence of the fracture mechanics of cortical bone. J Biomech 22(8–9):863–872

    Article  Google Scholar 

  • Bonfield W, Datta PK (1976) Fracture toughness of compact bone. J Biomech 9(3):131–134

    Article  Google Scholar 

  • Bonfield W, Grynpas MD, Young RJ (1978) Crack velocity and the fracture of bone. J Biomech 11(10–12):473–479

    Article  Google Scholar 

  • Brian SN, Sol B, Wendelin P, Marcel EN (1993) Changes in the ratio of non-calcified collagen to calcified collagen in human vertebrae with advancing age. Connect Tissue Res 29(2):133–140

    Article  Google Scholar 

  • Cecile S, Wilson CH, Thomas AM (2001) Disturbance type and gait speed affect fall direction and impact location. J Biomech 34(3):309–317

    Article  Google Scholar 

  • Chen PY, Sheppard FA, Curiel JM, McKittrick J (2008) Fracture mechanisms of bone: a comparative study between antler and bovine femur. MRS online proceedings library archive, 1132

  • Christian DC (1987) Thermal stability of human-fibroblast-collagenase-cleavage products of type-i and type-iii collagens. Biochem J 247(3):725–729

    Article  Google Scholar 

  • Claire A, Meghan S, Eric S, James LG, Kimber LS, Lionel NM, Bernd G, Ann VS, Robert OR, Tamara NA et al (2018) Contributions of material properties and structure to increased bone fragility for a given bone mass in the ucd-t2dm rat model of type 2 diabetes. J Bone Mineral Res 33(6):1066–1075

    Article  Google Scholar 

  • Co Sih G, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J Fract Mech 1(3):189–203

    Article  Google Scholar 

  • Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55(1):53–58

    Article  Google Scholar 

  • Currey JD (2003) The many adaptations of bone. J Biomech 36(10):1487–1495

    Article  Google Scholar 

  • Daniel RM, Iris CL, Steven PP, Andrew CL (2018) The influence of muscle activation on impact dynamics during lateral falls on the hip. J Biomech 66:111–118

    Article  Google Scholar 

  • David BB, Mitchell BS, Richard GF (1988) Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech 21(11):939–945

    Article  Google Scholar 

  • De Santis R, Anderson P, Tanner KE, Ambrosio L, Nicolais L, Bonfield W, Davis GR (2000) Bone fracture analysis on the short rod chevron-notch specimens using the X-ray computer micro-tomography. J Mater Sci: Mater Med 11(10):629–636

    Google Scholar 

  • Elizabeth AZ, Maximilien EL, Holly DB, Robert OR (2009) Mixed-mode fracture of human cortical bone. Biomaterials 30(29):5877–5884

    Article  Google Scholar 

  • Elizabeth AZ, Bernd G, Eric S, Björn B, Robert OR (2014) Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials 35(21):5472–5481

    Article  Google Scholar 

  • Fletcher JWA, Sean Williams MR, Whitehouse HS Gill, Preatoni Ezio (2018) Juvenile bovine bone is an appropriate surrogate for normal and reduced density human bone in biomechanical testing: a validation study. Sci Rep 8(1):1–9

    Article  Google Scholar 

  • Georg EF, Tue H, Johannes HK, James CW, Henrik B, Leonid P, Jacqueline AC, Geraldo AGC, Galen DS, Daniel EM et al (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4(8):612–616

    Article  Google Scholar 

  • Groen BE, Weerdesteyn V, Jaak D (2008) The relation between hip impact velocity and hip impact force differs between sideways fall techniques. J Electromyogr Kinesiol 18(2):228–234

    Article  Google Scholar 

  • Gwendolen CR, John DC (2000) The effects of damage and microcracking on the impact strength of bone. J Biomech 33(3):337–343

    Article  Google Scholar 

  • Hans Oxlund M, Gitte Ørtoft B, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17(4):S365–S371

    Article  Google Scholar 

  • Hareesh VT, Sridhar K, Ares JR (1991) Optical mapping of crack tip deformations using the methods of transmission and reflection coherent gradient sensing: a study of crack tip k-dominance. Int J Fract 52(2):91–117

    Article  Google Scholar 

  • Hisao K, Takashi A (2004) Effect of long-term formalin preservation on bending properties and fracture toughness of bovine compact bone. Mater Trans 45(10):3060–3064

    Article  Google Scholar 

  • Holden JL, Clement JG, Phakey PP (1995) Age and temperature related changes to the ultrastructure and composition of human bone mineral. J Bone Mineral Res 10(9):1400–1409

    Article  Google Scholar 

  • Holden JL, Phakey PP, Clement JG (1995) Scanning electron microscope observations of heat-treated human bone. Forensic Sci Int 74(1–2):29–45

    Article  Google Scholar 

  • Holger N, Stephan M, Michael B, Chunlin Y, Hartwig L, Boris B, Peter KM (1992) Comparative study on the thermostability of collagen i of skin and bone: influence of posttranslational hydroxylation of prolyl and lysyl residues. J Protein Chem 11(6):635–643

    Article  Google Scholar 

  • James DJ, Chantal EK, Joel LL, Saija AK (2019) A single-spring model predicts the majority of variance in impact force during a fall onto the outstretched hand. J Biomech. 90:149–152

    Article  Google Scholar 

  • Jiahau Y, Kari BC, John JM, Roger LR (2006) Fracture toughness of manatee rib and bovine Femur using a Chevron-notched beam test. J Biomech 39(6):1066–1074

    Article  Google Scholar 

  • John DC (2006) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Karl JJ, Steven AG, Janet LK, Mitchell BS, Jeffrey B (1996) Type-i collagen mutation compromises the post-yield behavior of mov13 long bone. J Orthop Res 14(3):493–499

    Article  Google Scholar 

  • Karl JJ, Mitchell BS, Janet LK, Robert WG, Jeffrey B, Steven AG (1997) Type i collagen mutation alters the strength and fatigue behavior of mov13 cortical tissue. J Biomech 30(11–12):1141–1147

    Google Scholar 

  • Kirugulige MS, Tippur HV (2009) Measurement of fracture parameters for a mixed-mode crack driven by stress waves using image correlation technique and high-speed digital photography. Strain 45(2):108–122

    Article  Google Scholar 

  • Kuangshin T, Franz-Josef U, Christine O (2006) Nanogranular origins of the strength of bone. Nano Lett 6(11):2520–2525

    Article  Google Scholar 

  • Laurence CB, Melvin JG (1970) Thermal denaturation of mineralized and demineralized bone collagens. J Ultrastruct Res 32(5–6):545–557

    Google Scholar 

  • Liu D, Wagner HD, Weiner S (2000) Bending and fracture of compact circumferential and osteonal lamellar bone of the baboon tibia. J Mater Sci Mater Med 11(1):49–60

    Article  Google Scholar 

  • Logan S, Tusit W, Allan G, Brett S, Leslie L (2015) Rate-dependent fracture modes in human femoral cortical bone. Int J Fract 194(2):81–92

    Article  Google Scholar 

  • Lucksanasombool P, Higgs WAJ, Higgs RJED, Swain MV (2001) Fracture toughness of bovine bone: influence of orientation and storage media. Biomaterials 22(23):3127–3132

    Article  Google Scholar 

  • Madhu SK, Hareesh VT, Thomas SD (2007) Measurement of transient deformations using digital image correlation method and high-speed photography: application to dynamic fracture. Appl Opt 46(22):5083–5096

    Article  Google Scholar 

  • Margel RD, David R, Craig RB (1978) Fracture toughness, critical crack length and plastic zone size in bone. J Biomech 11(8–9):359–364

    Google Scholar 

  • Maria LH, Lynne SB (2007) Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 52(2):249–263

    Article  Google Scholar 

  • Markus JB (2007) Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology 18(29):295102

    Article  Google Scholar 

  • Masahiro K, Hisao K, Takashi A, Hirakazu K (2009) Effect of different preservative methods on fracture behavior of bovine cortical bone. Mater Trans 50:305–412

    Article  Google Scholar 

  • Matthew JS, Gibson LJ (1997) Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone 21(2):191–199

    Article  Google Scholar 

  • Maximilien EL, Markus JB, Robert OR (2010) On the mechanistic origins of toughness in bone. Ann Rev Mater Res 40:25–53

    Article  Google Scholar 

  • Melvin JW (1973) Crack propagation in bone. In: Abstract of ASME 1973 biomechanical symposium, pp. 87–88

  • Michael S (2001) Paleohistopathology of bone: a new approach to the study of ancient diseases. Am J Phys Anthropol 116(S33):106–147

    Article  Google Scholar 

  • Michael C, Johnson S (2016) Machining characteristics of the Haversian and plexiform components of bovine cortical bone. J Mech Behav Biomed Mater 60:525–534

    Article  Google Scholar 

  • Moyle DD, Gavens AJ (1986) Fracture properties of bovine tibial bone. J Biomech 19(11):919–927

    Article  Google Scholar 

  • Nalla RK, Kinney JK, Tomsia AP, Ritchie RO (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2(3):164–168

    Article  Google Scholar 

  • Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2004) Effect of aging on the toughness of human cortical bone: evaluation by r-curves. Bone 35(6):1240–1246

    Article  Google Scholar 

  • Nalla RK, Jamie JK, John HK, Robert OR (2005) Mechanistic aspects of fracture and r-curve behavior in human cortical bone. Biomaterials 26(2):217–231

    Article  Google Scholar 

  • Nalla RK, Kinney JK, Tomsia AP, Ritchie RO (2006) Role of alcohol in the fracture resistance of teeth. J Dent Res 85(11):1022–1026

    Article  Google Scholar 

  • Paul LK, Peter C (1996) Thermal stabilization of collagen fibers by calcification. Connect Tissue Res 33(4):275–282

    Article  Google Scholar 

  • Peter Z, Ulrich H, John DC (2008) Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech 41(14):2932–2939

    Article  Google Scholar 

  • Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcified tissue international 58(4):231–235

    Article  Google Scholar 

  • Raghavendra RA, Fengchun J, Kenneth SV (2006) Dynamic fracture of bovine bone. Mater Sci Eng C 26(8):1325–1332

    Article  Google Scholar 

  • Ritchie RO, Koester KJ, Ionova S, Yao Wei, Lane Nancy E, Ager Iii JW (2008) Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone 43(5):798–812

    Article  Google Scholar 

  • Robb MK, Fengchun J, Kenneth SV (2011) Effects of age and loading rate on equine cortical bone failure. J Mech Behav Biomed Mater 4(1):57–75

    Article  Google Scholar 

  • Robert JS (1980) Application of the least-squares method to photoelastic analysis. Exp Mech 20(6):192–197

    Article  Google Scholar 

  • Robert OR, John HK, Jamie JK, Ravi KN (2005) A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct 28(4):345–371

    Article  Google Scholar 

  • Robert OR, Kinney JH, Kruzic JJ, Nalla RK (2006) Cortical bone fracture. Wiley encyclopedia of biomedical engineering. Wiley, New York

    Google Scholar 

  • Robert MM, Jessica MC, Brittany C (2021) High-rate anisotropic properties in human infant parietal and occipital bone. J Biomech Eng 143(6):061010

    Article  Google Scholar 

  • Robinovitch SN, Wilson CH, McMahon TA (1991) Prediction of femoral impact forces in falls on the hip. J Biomech Eng 113:366–374

    Article  Google Scholar 

  • Ruud AB, Marianne K, Bob B, Reinout S, Alice M, Floris PJGL, Johan MTK (1997) A simplified measurement of degraded collagen in tissues: application in healthy, fibrillated and osteoarthritic cartilage. Matrix Biol 16(5):233–243

    Article  Google Scholar 

  • Sabah N, Orestis LK, Nizar Z, Georges L, Philipp JT (2017) Elastic modulus varies along the bovine femur. J Mech Behav Biomed Mater. 71:279–285

    Article  Google Scholar 

  • Sanborn B, Gunnarsson CA, Foster M, Weerasooriya T (2016) Quantitative visualization of human cortical bone mechanical response: studies on the anisotropic compressive response and fracture behavior as a function of loading rate. Exp Mech 56(1):81–95

    Article  Google Scholar 

  • Sidney L, Douglas H, Elizabeth P, Herbert AM (1994) Comparison of dosage-dependent effects of \(\beta \)-aminopropionitrile, sodium fluoride, and hydrocortisone on selected physical properties of cortical bone. J Bone Mineral Res 9(9):1377–1389

    Google Scholar 

  • Sommerfeldt D, Rubin C (2001) Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J 10(2):S86–S95

    Google Scholar 

  • Steve W, Wagner HD (1998) The material bone: structure–mechanical function relations. Ann Rev Mater Sci 28(1):271–298

    Article  Google Scholar 

  • Steve W, Wolfie T, Wagner HD (1999) Lamellar bone: structure–function relations. J Struct Biol 126(3):241–255

    Article  Google Scholar 

  • Susan FL, Katz JL (1984) The relationship between elastic properties and microstructure of bovine cortical bone. J Biomech 17(4):231–240

    Article  Google Scholar 

  • Swartz DE, Wittenberg RH, Shea M, White AA III, Hayes WC (1991) Physical and mechanical properties of calf lumbosacral trabecular bone. J Biomech 24(11):1059–1068

    Article  Google Scholar 

  • Tanabe Y, Tanner KE, Bonfield W (1998) Effect of loading rate on fracture toughness of bovine cortical bone. J Biomech 1001(31):121

    Article  Google Scholar 

  • Timothy LN, Wang Z (1997) Microdamage of human cortical bone: incidence and morphology in long bones. Bone 20(4):375–379

    Article  Google Scholar 

  • Timothy LN, Vashishth D, Burr DB (1992) Effect of groove on bone fracture toughness. J Biomech 25(12):1489–1492

    Article  Google Scholar 

  • Todoh M, Tadano S, Imari Y (2009) Effect of heat denaturation of collagen matrix on bone strength. 13th international conference on biomedical engineering. Springer, Berlin, pp 2034–2037

    Chapter  Google Scholar 

  • Ulrich H, Peter Z, Rebecca S, John DC, David H (2008) The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng 130:11011

    Article  Google Scholar 

  • Van Buskirk WC, Cowin SC, Ward Ro N (1981) Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone. J Biomech Eng 103:67–72

    Article  Google Scholar 

  • van den Kroonenberg Aya J, Wilson CH, Thomas AM (1996) Hip impact velocities and body configurations for voluntary falls from standing height. J Biomech 29(6):807–811

  • Wang X, Shen X, Li X, Mauli Agrawal C (2002) Age-related changes in the collagen network and toughness of bone. Bone 31(1):1–7

  • Wei Y, Freund LB (1985) Transverse shear effects for through-cracks in an elastic plate. Int J Solids Struct 21(9):977–994

    Article  MathSciNet  MATH  Google Scholar 

  • Xiaodu W, Ruud AB, Johan MT, Gene BH, Kyriacos AA, Agrawal CM (2000) Effect of collagen denaturation on the toughness of bone. Clin Orthop Relat Res 371:228–239

    Article  Google Scholar 

  • Xuedong Z, Jinling G, Yizhou N, Zherui G, Nesredin K, Ben C, Tao S, Kamel F, Xianghui X, Weinong WC (2019) Real-time visualization of dynamic fractures in porcine bones and the loading-rate effect on their fracture toughness. J Mech Phys Solids 131:358–371

    Article  Google Scholar 

  • Yener NY, Timothy LN (2000) Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J Biomed Mater Res 51(3):504–509

    Article  Google Scholar 

  • Yeni YN, Timothy NL (2000) Fracture toughness of human femoral neck: effect of microstructure, composition, and age. Bone 26(5):499–504

    Article  Google Scholar 

  • Yoneyama S, Morimoto Y, Takashi M (2006) Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation. Strain 42(1):21–29

    Article  Google Scholar 

  • Zherrina M, Ekaterina N, Ernest S, Joanna M (2013) A comparative study of young and mature bovine cortical bone. Acta Biomater 9(2):5280–5288

    Article  Google Scholar 

  • Zude F, Jae R, Seung H, Israel Z (2000) Orientation and loading condition dependence of fracture toughness in cortical bone. Mater Sci Eng C 11(1):41–46

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Brittany Coats for the use of her laboratory’s drop tower. T. Snow and O.T. Kingstedt thank that University of Utah Undergraduate Research Opportunities Office for supporting a portion of the work performed.

Funding

A portion of this work was supported by funding from the Undergraduate Research Opportunities Program at the University of Utah awarded to Tanner Snow.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: OTK, CA; Methodology: TS, WW, RMM, JR; Writing - original draft preparation: TS, Writing - review and editing: OTK, CA, WW, TS, RMM; Funding Acquisition: OTK, TS; Resources: OTK, CA; Supervision: OTK and CA.

Corresponding author

Correspondence to Owen T. Kingstedt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snow, T., Woolley, W., Metcalf, R.M. et al. Effect of collagen damage induced by heat treatment on the mixed-mode fracture behavior of bovine cortical bone under elevated loading rates. Int J Fract 233, 85–101 (2022). https://doi.org/10.1007/s10704-021-00612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-021-00612-0

Keywords

Navigation