Skip to main content
Log in

Elastic wave scattering by a pair of parallel semi-infinite cracks in mechanical metamaterials with multi resonators

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

As emerging artificial structures, elastic wave metamaterials can show some unique properties in special frequency regions. In this study, the elastic wave scattering by a pair of parallel semi-infinite cracks in mechanical metamaterials with local resonators is studied. According to the discrete Wiener–Hopf method, the far field displacement solution is obtained. At the same time, the dynamic negative effective mass and band gaps can be observed with local resonators. Our attention is focused on how the internal microstructure affects the crack faces. Numerical results show that because of the stop band, the crack can be prevented from being disturbed by incident waves in specific frequency regions. As a result, the possibility of crack initiation and instability propagation is reduced considerably. This present work is expected to provide a way to improve arrest performance of elastic waves metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexeenko I, Vandenrijt JF, Pedrini G, Thizy C, Vollheim B, Osten W, Georges MP (2013) Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays. Appl Opt 52:A56–A67

    Article  Google Scholar 

  • Attarzadeh MA, Al Ba’Ba’A H, Nouh M (2017) On the wave dispersion and non-reciprocal power flow in space-time traveling acoustic metamaterials. Appl Acoust 133:210–214

    Article  Google Scholar 

  • Beli D, Arruda JRF, Ruzzene M (2018) Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int J Solids Struct 139:105–120

    Article  Google Scholar 

  • Bibi A, Liu H, Xue JL, Fan YX, Tao ZY (2019) Manipulation of the first stop band in periodically corrugated elastic layers via different profiles. Wave Motion 88:205–213

    Article  Google Scholar 

  • Bouwkamp CJ (1954) Diffraction theory. Rep Prog Phys 17:35–100

    Article  Google Scholar 

  • Chen EP, Sih GC (1975) Scattering of plane-waves by a propagating crack. ASME J Appl Mech 42:705–711

    Article  Google Scholar 

  • Chen YJ, Huang Y, Lu CF, Chen WQ (2017) A two-way unidirectional narrow-band acoustic filter realized by a graded phononic crystal. ASME J Appl Mech 84:091003

    Article  Google Scholar 

  • Erdélyi A (1955) Asymptotic representations of Fourier integrals and the method of stationary phase. J Soc Ind Appl Math 3:17–27

    Article  Google Scholar 

  • Fineberg J, Sharon E, Cohen G (2003) Crack front waves in dynamic fracture. Int J Fract 121:55–69

    Article  Google Scholar 

  • Huang GL, Sun CT (2010) Band gaps in a multiresonator acoustic metamaterial. ASME J Vib Acoust 132:031003

    Article  Google Scholar 

  • Huang HH, Sun CT (2011) Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Phil Mag 91:981–996

    Article  CAS  Google Scholar 

  • Huang KX, Shui GS, Wang YZ, Wang YS (2021) Discrete scattering and meta-arrest of locally resonant elastic wave metamaterials with a semi-infinite crack. Proc R Soc A 477:20210356

    Article  Google Scholar 

  • Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V (2006) Complete band gaps in two-dimensional phononic crystal slabs. Phys Rev E 74:046610

    Article  CAS  Google Scholar 

  • Kristensen PK, Niordson CF, Martinez-Paneda E (2021) An assessment of phase field fracture: crack initiation and growth. Phil Trans R Soc A 397:20210021

    Article  Google Scholar 

  • Krushynska AO, Miniaci M, Kouznetsova VG, Geers MGD (2017) Multilayered inclusions in locally resonant metamaterials: two-dimensional versus three-dimensional modeling. ASME J Vib Acoust 139:024501

    Article  Google Scholar 

  • Lefort V, Nouailletas O, Gregoire D, Pijaudier-Cabot G (2020) Lattice modelling of hydraulic fracture: theoretical validation and interactions with cohesive joints. Eng Fract Mech 235:107178

    Article  Google Scholar 

  • Li ZW, Wang C, Wang XD (2019) Modelling of elastic metamaterials with negative mass and modulus based on translational resonance. Int J Solids Struct 162:271–284

    Article  Google Scholar 

  • Lipperman F, Ryvkin M, Fuchs MB (2007) Fracture toughness of two-dimensional cellular material with periodic microstructure. Int J Fract 146:279–290

    Article  Google Scholar 

  • Liu E, Crampin S, Hudson JA (1997) Diffraction of seismic waves by cracks with application to hydraulic fracturing. Geophysics 62:253–265

    Article  Google Scholar 

  • Liu XN, Hu GK, Huang GL, Sun CT (2011) An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl Phys Lett 98:251907

    Article  Google Scholar 

  • Liu Y, Chang Z, Feng XQ (2017) Stable elastic wave band-gaps of phononic crystals with hyperelastic transformation materials. Extrem Mech Lett 11:37–41

    Article  Google Scholar 

  • Loeber JF, Sih GC (1968) Diffraction of antiplane shear waves by a finite crack. J Acoust Soc Am 44:90–98

    Article  Google Scholar 

  • Mandal SC, Ghosh ML (1994) Interaction of elastic waves with a periodic array of coplanar Griffith cracks in an orthotropic elastic medium. Int J Eng Sci 32:167–178

    Article  CAS  Google Scholar 

  • Maurya G, Sharma BL (2019) Scattering by two staggered semi-infinite cracks on square lattice: an application of asymptotic Wiener-Hopf factorization. Z Angew Math Phys 70:133

    Article  Google Scholar 

  • Mishuris GS, Movchan AB, Slepyan LI (2007) Waves and fracture in an inhomogeneous lattice structure. Waves Random Complex Media 17:409–428

    Article  Google Scholar 

  • Mishuris GS, Movchan AB, Slepyan LI (2009) Localised knife waves in a structured interface. J Mech Phys Solids 57:1958–1979

    Article  Google Scholar 

  • Mokhtari AA, Lu Y, Srivastava A (2019) On the emergence of negative effective density and modulus in 2-phase phononic crystals. J Mech Phys Solids 126:256–271

    Article  Google Scholar 

  • Nemat-Nasser S (2015) Anti-plane shear waves in periodic elastic composites: band structure and anomalous wave refraction. Proc R Soc A 471:20150152

    Article  Google Scholar 

  • Nemat-Nasser S (2017) Unified homogenization of photonic/phononic crystals with first-band negative refraction. Mech Mater 105:29–41

    Article  Google Scholar 

  • Noble B (1958) Methods based on the Wiener-Hopf technique. Pergamon, London

    Google Scholar 

  • Oh JH, Kwon YE, Lee HJ, Kim YY (2016) Elastic metamaterials for independent realization of negativity in density and stiffness. Sci Rep 6:23630

    Article  CAS  Google Scholar 

  • Sharma BL (2015) Diffraction of waves on square lattice by semi-infinite crack. SIAM J Appl Math 75:1171–1192

    Article  Google Scholar 

  • Sharma BL, Maurya G (2019) Discrete scattering by a pair of parallel defects. Phil Trans R Soc A 378:20190102

    Article  Google Scholar 

  • Sih GC, Loeber JF (1968) Flexural waves scattering at a through crack in an elastic plate. Eng Fract Mech 1:369–378

    Article  Google Scholar 

  • Slepyan LI (2002) Models and phenomena in fracture mechanics. Springer, Berlin

    Book  Google Scholar 

  • Slepyan LI, Movchan AB, Mishuris GS (2010) Crack in a lattice waveguide. Int J Fract 162:91–106

    Article  Google Scholar 

  • Sommerfeld A (1896) Mathematische theorie der diffraction. Math Ann 47:317–374

    Article  Google Scholar 

  • Wang G, Wen XS, Wen JH, Shao LH, Liu YZ (2004) Two-dimensional locally resonant phononic crystals with binary structures. Phys Rev Lett 93:154302

    Article  Google Scholar 

  • Zhou YH, Wei PJ, Tang QH (2016) Continuum model of a one-dimensional lattice of metamaterials. Acta Mech 227:2361–2376

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express gratitude for the support provided by the National Natural Science Foundation of China (Grant Nos. 11922209, 11991031 and 12021002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ze Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Substitution of Eq. (4) into Eqs. (13) yields the homogeneous equation for amplitudes as

$$ {\mathbf{DA}}\,{ = }\,{\mathbf{0,}} $$
(A1)

where \({\text{A = }}\{ A_{1} {, }A_{2} {, }A_{3} \}^{{\text{T}}}\) is the amplitude vector and

$$ {\mathbf{D}}\,{ = }\,\left[ {\begin{array}{*{20}c} {2k_{1} \left[ {2\, - \,\cos \left( {k_{x} } \right)\, - \,\cos \left( {k_{y} } \right)} \right]\, - \,m_{1} \omega^{2} \, + \,k_{2} } & { - \,k_{2} } & 0 \\ { - k_{2} } & {k_{2} \, + \,k_{3} \, - \,m_{2} \omega^{2} } & { - \,k_{3} } \\ 0 & { - \,k_{3} } & {k_{3} \, - \,m_{3} \omega^{2} } \\ \end{array} } \right]. $$
(A2)

The linear algebraic equations with respect to Aj (j = 1–3) have nontrivial solutions when det[D] = 0. Then, the determinant can result in the dispersion relation as Eqs. (5 and 6). And the terms can be expressed as

$$ a\,{ = }\, - \,m_{1} m_{2} m_{3} , $$
(A3)
$$ b\,{ = }\,{4}k_{{1}} m_{{2}} m_{{3}} \,{ + }\,k_{{2}} m_{{1}} m_{{3}} \,{ + }\,k_{{3}} m_{{1}} m_{{2}} \,{ + }\,k_{{2}} m_{{2}} m_{{3}} \,{ + }\,k_{{3}} m_{{1}} m_{{3}} \, - \,{2}k_{{1}} m_{{2}} m_{{3}} {\text{cos}}\left( {k_{x} } \right)\, - \,{2}k_{{1}} m_{{2}} m_{{3}} {\text{cos}}\left( {k_{y} } \right){,} $$
(A4)
$$ c\,{ = }\,{2}k_{{1}} k_{{2}} m_{{3}} {\text{cos}}\left( {k_{x} } \right)\,{ + }\,{2}k_{{1}} k_{{3}} m_{{2}} {\text{cos}}\left( {k_{x} } \right)\,{ + }\,{2}k_{1} k_{3} m_{{3}} {\text{cos}}\left( {k_{x} } \right)\,{ + }\,{2}k_{1} k_{2} m_{3} {\text{cos}}\left( {k_{y} } \right)\,{ + }\,{2}k_{{1}} k_{{3}} m_{{3}} {\text{cos}}\left( {k_{y} } \right) $$
$$ { + }\,{2}k_{{1}} k_{{3}} m_{{2}} {\text{cos}}\left( {k_{y} } \right)\, - \,{4}k_{{1}} k_{2} m_{3} \, - \,{4}k_{1} k_{3} m_{2} \, - \,k_{2} k_{3} m_{1} \, - \,4k_{1} k_{3} m_{3} \, - \,k_{2} k_{3} m_{2} \, - \,k_{2} k_{3} m_{3} , $$
(A5)
$$ d\,{ = }\,{4}k_{1} k_{2} k_{3} \, - \,{2}k_{{1}} k_{2} k_{3} {\text{cos(}}k_{x} {)}\, - \,{2}k_{1} k_{2} k_{3} {\text{cos}}\left( {k_{y} } \right){,} $$
(A6)
$$ A\,{ = }\,b^{{2}} \, - \,{3}ac, $$
(A7)
$$ B\,{ = }\,bc\, - \,9ad, $$
(A8)
$$ C\,{ = }\,c^{{2}} \, - \,{3}bd, $$
(A9)
$$ T\,{ = }\,\frac{{{2}Ab\, - \,{3}aB}}{{2\sqrt {A^{3} } }}, $$
(A10)
$$ S\,{ = }\,\arccos (T). $$
(A11)

Appendix B

The discrete Fourier transform of function f(z) in the complex plane can be shown as

$$ f^{{\text{F}}} (z)\, = \,f_{ + }^{{\text{F}}} (z)\, + \,f_{ - }^{{\text{F}}} (z), $$
(B1)
$$ f_{ + }^{{\text{F}}} (z)\, = \,\sum\limits_{x = 0}^{x = + \infty } {f(x)z^{ - x} } , $$
(B2)
$$ f_{ - }^{{\text{F}}} (z)\, = \,\sum\limits_{x = - \infty }^{x = - 1} {f(x)z^{ - x} } , $$
(B3)

where \(f_{ + }^{{\text{F}}} (z)\) and \(f_{ - }^{{\text{F}}} (z)\) are analytic at |z|> R+ and |z|< R, respectively. As a result, \(f^{{\text{F}}} (z)\) is analytic at R+ <|z|< R.

On the other hand, f(x) can be obtained by the following inverse Fourier transform:

$$ f(x)\, = \,\frac{1}{{2\pi {\text{i}}}}\oint\limits_{{C_{a} }} {f(z)z^{x - 1} } {\text{d}}z, $$
(B4)

where Ca is a closed curve with the counter clockwise at R+ <|z|< R.

Appendix C

The wave motion equations of the lower crack face are shown as

$$ - \,m_{1} \omega^{2} w_{x,N - 1}^{(1)} \, + \,k_{1} \left( {3w_{x,N - 1}^{(1)} \, - \,w_{x - 1,N - 1}^{(1)} \, - \,w_{x + 1,N - 1}^{(1)} \, - \,w_{x,N - 2}^{(1)} } \right)\, + \,k_{2} \left( {w_{x,N - 1}^{(1)} \, - \,w_{x,N - 1}^{(2)} } \right) $$
$$ - \,k_{1} v_{x,N}^{{}} H(x)\, = \, - \,k_{1} v_{x,N}^{{{\text{inc}}}} H( - \,x\, - \,1), $$
(C1)
$$ - \,m_{2} \omega^{2} w_{x,N - 1}^{(2)} \, + \,k_{2} \left( {w_{x,N - 1}^{(2)} \, - \,w_{x,N - 1}^{(1)} } \right)\, + \,k_{3} \left( {w_{x,N - 1}^{(2)} \, - \,w_{x,N - 1}^{(3)} } \right)\, = \,0, $$
(C2)
$$ - \,m_{3} \omega^{2} w_{x,N - 1}^{(3)} \, + \,k_{3} \left( {w_{x,N - 1}^{(3)} \, - \,w_{x,N - 1}^{(2)} } \right)\, = \,0. $$
(C3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, KX., Shui, GS., Wang, YZ. et al. Elastic wave scattering by a pair of parallel semi-infinite cracks in mechanical metamaterials with multi resonators. Int J Fract 232, 199–212 (2021). https://doi.org/10.1007/s10704-021-00603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-021-00603-1

Keywords

Navigation