Skip to main content
Log in

Numerical fracture mechanics based prediction for the roughening of brittle cracks in 2D disordered solids

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The behavior of fractures in 2D brittle disordered materials results from the competition between the microstructural disorder that roughens cracks and the material elasticity that straightens them. The experimental fracture surfaces left behind are generally scale invariant and their complex geometry are still largely unexplained. Here, this issue is addressed numerically using the boundary element method that predicts incrementally the trajectory followed by cracks in an infinite elastic medium with a heterogeneous field of fracture energy. The predicted fracture profiles are characterized using their height-height correlation function and show scale invariant properties. In particular, simulated cracks are shown to follow a random walk with roughness exponent \(\zeta = 0.5\), irrespective of the level of microstructural disorder, indicating that the crack behavior is neither persistent nor anti-persistent, but instead, that the orientation of the next propagation increment is chosen randomly, independently of the past trajectory. This behavior is then interpreted from fracture mechanics calculations that show that the restoring force emerging from elasticity that generally straightens cracks vanishes in the limit of large specimens with respect to the characteristic size of the material heterogeneity. Our findings shed light on some experimental fracture patterns recently reported and suggests an explanation for the observation of two different types of fracture morphologies in 2D disordered brittle solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The development of \(G(\theta )/G_\mathrm {c}(\theta ) \simeq 1 - \cos ^2(\theta ) + \varDelta a/d \, f(\theta )\) around small angles \(\theta \ll 1\) for a continuous variation of \(G_\mathrm {c}\) shows that the limit \(\varDelta a/d \rightarrow 0\) corresponds to a straight path as the crack propagation direction along which this ratio is maximal converges then to \(\theta _\mathrm {max} \rightarrow 0\).

References

  • Alava MJ, Nukala PK, Zapperi S (2006) Statistical models of fracture. Adv Phys 55:349–476

    Article  Google Scholar 

  • Albertini G, Lebihain M, Hild F, Ponson L, Kammer DS (2021) Effective toughness of heterogeneous materials with rate-dependent fracture energy. Phys. Rev. Lett. 127:035501

  • Amestoy M, Leblond JB (1992) Crack paths in plane situations-II. Detailed form of the expansion of the stress intensity factors. Int J Solids Struct 29:465–501

    Article  Google Scholar 

  • Auvray N, Negi N, Trancart S, Ponson L (2019) L’analyse statistique des faciès de rupture: la science de la donnée au service de l’analyse de défaillance. Traitements & Matériaux 489:47–50

    Google Scholar 

  • Barak Y, Srivastava A, Osovski S (2019) Correlating fracture toughness and fracture surface roughness via correlation length. Int J Fract 219:19–30

    Article  CAS  Google Scholar 

  • Ben-Dayan I, Bouchbinder E, Procaccia I (2006) Random and correlated roughening in slow fracture by damage nucleation. Phys Rev E 74:146102

    Article  CAS  Google Scholar 

  • Boffa JM, Allain C, Hulin JP (1998) Experimental analysis of fracture rugosity in granular and compact rocks. Eur Phys J Appl Phys 2:281–289

    Article  Google Scholar 

  • Bonamy D, Bouchaud E (2011) Failure of heterogeneous materials: a dynamic phase transition? Phys Rep 498:1–44

    Article  CAS  Google Scholar 

  • Bonamy D, Ponson L, Prades S, Bouchaud E, Guillot C (2006) Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics. Phys Rev Lett 97:135504

    Article  CAS  Google Scholar 

  • Bouchaud E, Lapasset G, Planès J (1990) Fractal dimension of fractured surfaces: a universal value? Europhys Lett 13:73–79

    Article  CAS  Google Scholar 

  • Bouchbinder E, Mathiesen J, Procaccia I (2004) Roughening of fracture surfaces: the role of plastic deformation. Phys Rev Lett 92:245505

    Article  CAS  Google Scholar 

  • Bouchbinder E, Procaccia I, Santucci S, Vanel L (2006) Fracture surfaces as multiscaling graphs. Phys Rev Lett 96:055509

    Article  CAS  Google Scholar 

  • Cambonie T, Bares J, Hattali ML, Bonamy D, Lazarus V, Auradou H (2015) Effect of the porosity on the fracture surface roughness of sintered materials: from anisotropic to isotropic self-affine scaling. Phys Rev E 91:012406

    Article  CAS  Google Scholar 

  • Chambolle A, Francfort GA, Marigo JJ (2009) When and how do cracks propagate. J Mech Phys Solids 57:1614–1622

    Article  Google Scholar 

  • Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16:155–169

    Article  Google Scholar 

  • Crouch S (1967) Solution of plane elasticity problems by the displacement discontinuity method. Int J Numer Methods Eng 10:301–343

    Article  Google Scholar 

  • Crouch S, Starfield A (1983) Boundary element methods in solid mechanics. Georges Allen and Unwin, London

    Book  Google Scholar 

  • Dalmas D, Lelarge A, Vandembroucq D (2008) Crack propagation through phase-separated glasses: effect of the characteristic size of disorder. Phys Rev Lett 101:255501

    Article  CAS  Google Scholar 

  • Demery V, Rosso A, Ponson L (2014) From microstructural features to effective toughness in disordered brittle solids. EPL 105:34003

    Article  CAS  Google Scholar 

  • Engøy T, Måløy KJ, Hansen A, Roux S (1994) Roughness of two-dimensional cracks in wood. Phys Rev Lett 73:834–837

    Article  Google Scholar 

  • Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–525

    Article  Google Scholar 

  • Faber KT, Evans AG (1983) Crack deflection processes-I. Theory. Acta Metall 31:565–576

    Article  Google Scholar 

  • Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int. J. Fract 10:507–523

    Article  Google Scholar 

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J. Mech. Phys. Solids 57:342–368

    Article  CAS  Google Scholar 

  • Hansen A, Hinrichsen E, Roux S (1991) Roughness of crack interfaces. Phys. Rev. Lett. 66:2476–2479

    Article  CAS  Google Scholar 

  • Hansen A, Schmittbuhl J (2003) Origin of the universal roughness exponent of brittle fracture surfaces: stress weighted percolation in the damage zone. Phys Rev Lett 90:45504

    Article  CAS  Google Scholar 

  • Hussain MA, Pu SL, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode II. ASTM Spec Tech Publ 560:2–28

    Google Scholar 

  • Katzav E, Adda-Bedia M (2013) Stability and roughness of tensile cracks in disordered materials. Phys Rev E 882088:052402

    Article  CAS  Google Scholar 

  • Katzav E, Adda-Bedia M, Derrida B (2007) Fracture surfaces of heterogeneous materials: a 2d solvable model. Eur Phys Lett 78:46006

    Article  CAS  Google Scholar 

  • Kertesz J, Horvath V, Weber F (1993) Self-affine rupture lines in paper sheet. Fractals 1:67–74

    Article  Google Scholar 

  • Lebihain M (2019) Large-scale crack propagation in heterogeneous materials : an insight into the homogenization of brittle fracture properties. Ph.D. thesis. Sorbonne Université

  • Lebihain M, Leblond J, Ponson L (2020) Effective toughness of periodic heterogeneous materials: the effect of out-of-plane excursions of cracks. J Mech Phys Solids 11:137

    Google Scholar 

  • Mallick M, Cortet PP, Santucci S, Roux SG, Vanel L (2007) Discrepancy between sub-critical and fast rupture roughness: a cumulant analysis. Phys Rev Lett 98:255502

    Article  CAS  Google Scholar 

  • Måløy KJ, Hansen A, Hinrichsen EL, Roux S (1992) Experimental measurements of the roughness of brittle cracks. Phys Rev Lett 68:213–215

    Article  Google Scholar 

  • Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:721–722

    Article  CAS  Google Scholar 

  • Melin S (1985) The infinitesimal kink. Report LUTFD2/(TFHF-3022)/1-19, Division of solid Mechanics, Lund Institute of Tchnology

  • Meng C, Maerten F, Pollard DD (2013) Modeling mixed-mode fracture propagation in isotropic elastic three dimensional solid. Int J Fract 179:45–57

    Article  Google Scholar 

  • Millman VY, Stelmashenko NA, Blumenfeld R (1994) Fracture surfaces: a critical review of fractal studies and a novel morphological analysis of scanning tunneling microscopy measurements. Prog Mat Sci 38:425–474

    Article  Google Scholar 

  • Morel S, Bonamy D, Ponson L, Bouchaud E (2008) Transient damage spreading and anomalous scaling in moratr crack surfaces. Phys Rev E 78:016112

    Article  CAS  Google Scholar 

  • Morel S, Lubet T, Pouchou JL, Olive JM (2004) Roughness analysis of the cracked surfaces of a face centered cubic alloy. Phys Rev Lett 93:065504

    Article  CAS  Google Scholar 

  • Ortiz JE, Cisilino AP (2005) Boundary element method for j-integral and stress intensity factor computations in three-dimensional interface cracks. Int J Fract 133:197–222

    Article  Google Scholar 

  • Osovski S, Srivastava A, Ponson L, Bouchaud E, Tvergaard V, Ravi-Chandar K, Needleman A (2015) The effect of loading rate on ductile fracture toughness and fracture surface roughness. J Mech Phys Solids 76:20–46

    Article  Google Scholar 

  • Patinet S, Vandembroucq D, Roux S (2013) Quantitative prediction of effective toughness at random heterogeneous interfaces. Phys Rev Lett 110:165507

    Article  CAS  Google Scholar 

  • Ponson L (2007) Crack propagation in disordered materials: How to decipher fracture surfaces. Ann Phys 32:1–128

    Article  Google Scholar 

  • Ponson L (2016) Statistical aspects in crack growth phenomena: how the fluctuations reveal the failure mechanisms. Int J Frac 201:11–27

    Article  CAS  Google Scholar 

  • Ponson L, Auradou H, Vié P, Hulin JP (2006a) Low self-affine exponents of fractured glass ceramics surfaces. Phys Rev Lett 97:125501

    Article  CAS  Google Scholar 

  • Ponson L, Bonamy D, Bouchaud E (2006b) Two-dimensional scaling properties of experimental fracture surfaces. Phys Rev Lett 96:035506

    Article  CAS  Google Scholar 

  • Ponson L, Shabir Z, Abdulmajid M, der Giessen EV, Simone A (2021) A unified scenario for the morphology of crack paths in two-dimensional disordered solids. Phys Rev E (in press)

  • Ramanathan S, Ertas D, Fisher DS (1997) Quasistatic crack propagation in heterogeneous media. Phys Rev Lett 79:873–876

    Article  CAS  Google Scholar 

  • Ramos O, Cortet PP, Ciliberto S, Vanel L (2013) Experimental study of the effect of disorder on subcritical crack growth dynamics. Phys Rev Lett 110:165506

    Article  CAS  Google Scholar 

  • Salminen LI, Alava M, Niskanen KJ (2003) Analysis of long crack lines in paper webs. Eur Phys J B 2003:369–374

    Article  CAS  Google Scholar 

  • Schwaab ME, Biben T, Santucci S, Gravouil A, Vanel L (2018) Interacting cracks obey a multiscale attractive to repulsive transition. Phys. Rev. Lett. 120:255501

  • Shen B, Stephansson O (1994) Modification of the g-criterion for crack propagation subjected to compression. Eng Fract Mech 47:117–189

    Article  Google Scholar 

  • Silva GD, Einstein HH (2013) Modeling of crack initiation, propagation and coalescence in rocks. Int. J. Fract 182:167–186

    Article  Google Scholar 

  • Srivastava A, Ponson L, Osovski S, Bouchaud E, Tvergaard V, Needleman A (2014) Effect of inclusion density on ductile fracture toughness and roughness. J Mech Phys Solids 63:62–79

  • Vernède S, Ponson L (2015) Method for characterizing the cracking mechanism of a material from the fracture surface thereof , patent WO050871

  • Vernède S, Ponson L, Bouchaud J (2015) Turbulent fracture surfaces: a footprint of damage percolation? Phys Rev Lett 114:215501

    Article  CAS  Google Scholar 

  • Wang N, Xia S (2017) Cohesive fracture of elastically heterogeneous materials: an integrative modeling and experimental study. J Mech Phys Solids 98:87–105

    Article  CAS  Google Scholar 

  • Williams ML (1952) Stress singularity resulting from various boundary conditions in angular corners of plates in extension. J Appl Mech 19:526–528

    Article  Google Scholar 

  • Zapperi S, Nukala PK, Simunovic S (2005) Crack roughness and avalanche precursors in the random fuse model. Phys Rev E 71:026106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Ponson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konate, L., Kondo, D. & Ponson, L. Numerical fracture mechanics based prediction for the roughening of brittle cracks in 2D disordered solids. Int J Fract 230, 225–240 (2021). https://doi.org/10.1007/s10704-021-00576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-021-00576-1

Keywords

Navigation