Skip to main content
Log in

Invariant integrals and asymptotic fields near the front of a curved planar crack

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A plane crack is considered and the influence of local curvature of the crack front on the local mechanical fields is studied. The main goal is to determine the stress intensity factors along a curved planar crack in linear elasticity with accuracy. This is obtained by determination of new test fields and the use of bilinear forms, issued from invariant integrals, which separate the local modes of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech 24:109–114

    Article  Google Scholar 

  • Bui HD (1975) Application des potentiels élastiques à l’étude des fissures de forme arbitraire en milieu tridimensionel. CR Acad Sci Paris 280:1157–1161

  • Bui HD (1977) An integral equations method for solving the problem of a plane crack of arbitrary shape. J Mech Phys Solids 23:29–39

    Article  Google Scholar 

  • Leblond JB (1989) Crack path in plane situation 1: General form of the expansion of the stress intensity factor. Int J Solids Struct 25:1131–1325

    Article  Google Scholar 

  • Eshelby JD (1951) The force on an elastic singularity. Phil. Trans. Roy. Soc. London, A 244:376–396

    Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35

  • Destuynder P, Djaoua M (1981) Sur une interprétation mathématique de l’intégrale de Rice en théorie de la rupture fragile. Math Meth Appl Sci 3:70–87

    Article  Google Scholar 

  • Chen FHK, Shield RR (1977) Conservation laws in elasticity of the J-integral type. J Appl Math Phys 28:1–22

    CAS  Google Scholar 

  • Leblond JB, Torlai O (1992) The stress field near the front of an arbitrarily shaped crack in a three-dimensional elastic body. J Elast 29:97–131

    Article  Google Scholar 

  • Yosibash Z, Shannon S, Dauge M, Costabel M (2011) Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains. Int J Fract 168:31–52

    Article  Google Scholar 

  • Fabrikant VI (1988) Green’s functions for a penny-shaped crack under normal loading. Eng Fract Mech 30(1):87–104

    Article  Google Scholar 

  • Fabrikant VI (1989) Flat crack under shear loading. Acta Mech 78:1–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stolz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Derivation in the local frame

The local basis is given by \(\varvec{e}_r,\varvec{e}_{\theta },\varvec{e}_{s}\) for this frame we have the relations

$$\begin{aligned} \dfrac{\partial \varvec{e}_r}{\partial \theta }= & {} \varvec{e}_{\theta };\quad \dfrac{\partial \varvec{e}_r}{\partial s}= \varGamma \cos \theta \varvec{e}_{s}\\ \dfrac{\partial \varvec{e}_{\theta }}{\partial \theta }= & {} -\varvec{e}_r;\quad \dfrac{\partial \varvec{e}_{\theta }}{\partial s}=-\varGamma \sin \theta \varvec{e}_{s}\\ \dfrac{\partial \varvec{e}_{s}}{\partial s}= & {} \varGamma \varvec{N}=-\varGamma (\cos \theta \varvec{e}_r-\sin \theta \varvec{e}_{\theta }) \end{aligned}$$

We can replace the derivative with respect to \(\,\mathrm{d}s\) by \(\mathrm{d}\phi \) taking account of \(\dfrac{\mathrm{d}\phi }{\,\mathrm{d}s} = \varGamma \).

Gradient of a vector

For a vector \(\varvec{u}=u\varvec{e}_r+ v\varvec{e}_{\theta }+ w\varvec{e}_{s}\) the gradient is

$$\begin{aligned} \nabla \varvec{u}= & {} \dfrac{\partial u}{\partial r}\varvec{e}_r\otimes \varvec{e}_r+\left( \dfrac{1}{r}\dfrac{\partial u}{\partial \theta }-\dfrac{v}{r}\right) \varvec{e}_r\otimes \varvec{e}_{\theta }\\&+(\dfrac{1}{\gamma }\dfrac{\partial u}{\partial s}-w\dfrac{\varGamma }{\gamma } \,\cos \theta )\varvec{e}_r\otimes \varvec{e}_{s} \\&+ \dfrac{\partial v}{\partial r} \varvec{e}_{\theta }\otimes \varvec{e}_r +\left( \dfrac{1}{\gamma }\dfrac{\partial v}{\partial s}+w\dfrac{\varGamma }{\gamma }\,\sin \theta \right) \varvec{e}_{\theta }\otimes \varvec{e}_{s}\\&+\left( \dfrac{1}{r}\dfrac{\partial v}{\partial \theta } + \dfrac{u}{r}\right) \varvec{e}_{\theta }\otimes \varvec{e}_{\theta }\\&+ \dfrac{\partial w}{\partial r} \varvec{e}_{s}\otimes \varvec{e}_r + \dfrac{1}{r}\dfrac{\partial w}{\partial \theta } \varvec{e}_{s}\otimes \varvec{e}_{\theta }\\&+ \left( \dfrac{1}{\gamma }\dfrac{\partial w}{\partial s} +u \dfrac{ \varGamma }{\gamma }\cos \theta -v\dfrac{\varGamma }{\gamma }\,\sin \theta \right) \varvec{e}_{s}\otimes \varvec{e}_{s} \end{aligned}$$

Divergence of a second order tensor

$$\begin{aligned}&P= P^{rr}\varvec{e}_r\otimes \varvec{e}_r+ P^{r\theta }\varvec{e}_r\otimes \varvec{e}_{\theta }+ P^{rs}\varvec{e}_r\otimes \varvec{e}_{s}\\&\quad + P^{\theta r}\varvec{e}_{\theta }\otimes \varvec{e}_r+ P^{\theta \theta }\varvec{e}_{\theta }\otimes \varvec{e}_{\theta }+ P^{\theta s}\varvec{e}_{\theta }\otimes \varvec{e}_{s}\\&\quad + P^{sr}\varvec{e}_{s}\otimes \varvec{e}_r+ P^{\theta s}\varvec{e}_{s}\otimes \varvec{e}_{\theta }+ P^{ss}\varvec{e}_{s}\otimes \varvec{e}_{s} \\&{\mathrm{div}}( P) = \left( \dfrac{\partial P^{rr}}{\partial r}+ \dfrac{1}{r}\dfrac{\partial P^{r\theta }}{\partial \theta } +\dfrac{P^{rr}-P^{\theta \theta }}{r} \right) \varvec{e}_r\\&\quad + \left( \dfrac{\partial P^{\theta r}}{\partial r}+\dfrac{1}{r}\dfrac{\partial P^{\theta \theta }}{\partial \theta } + (P^{r\theta }+P^{\theta r}) \dfrac{1}{r} \right) \varvec{e}_{\theta }\\&\quad +\left( \dfrac{1}{\gamma }\dfrac{\partial P^{rs}}{\partial s} + (P^{rr}-P^{ss}) \cos \theta \dfrac{\varGamma }{\gamma } - P^{r\theta }\sin \theta \dfrac{\varGamma }{\gamma } \right) \varvec{e}_r\\&\quad + \left( \dfrac{1}{\gamma }\dfrac{\partial P^{\theta s}}{\partial s}+P^{\theta r}\cos \theta \dfrac{\varGamma }{\gamma } +(P^{ss}-P^{\theta \theta }) \sin \theta \dfrac{\varGamma }{\gamma }\right) \varvec{e}_{\theta }\\&\quad +\left( \dfrac{\partial P^{sr}}{\partial r} +\dfrac{1}{r}\dfrac{\partial P^{\theta s}}{\partial \theta }+P^{sr}\dfrac{1}{r}+ \dfrac{1}{\gamma }\dfrac{\partial P^{ss}}{\partial s}\right) \varvec{e}_{s}\\&\quad +\left( (P^{rs}+P^{sr})\cos \theta - (P^{\theta s}+P^{\theta s}) \sin \theta \right) \dfrac{\varGamma }{\gamma } \varvec{e}_{s}\end{aligned}$$

Consider, that P is a symmetric tensor \(\sigma \), with components independent of s, we obtain

$$\begin{aligned} {\mathrm{div}}( \sigma )= & {} \left( \dfrac{\partial \sigma ^{rr}}{\partial r}+ \dfrac{1}{r}\dfrac{\partial \sigma ^{r\theta }}{\partial \theta } +\dfrac{\sigma ^{rr}-\sigma ^{\theta \theta }}{r} \right) \varvec{e}_r\\&+ \left( \dfrac{\partial \sigma ^{\theta r}}{\partial r}+\dfrac{1}{r}\dfrac{\partial \sigma ^{\theta \theta }}{\partial \theta } + 2\dfrac{\sigma ^{r\theta }}{r} \right) \varvec{e}_{\theta }\\&+ \left( \dfrac{\partial \sigma ^{sr}}{\partial r} +\dfrac{1}{r}\dfrac{\partial \sigma ^{\theta s}}{\partial \theta }+\sigma ^{sr}\dfrac{1}{r}\right) \varvec{e}_{s}\\&+\dfrac{\varGamma }{\gamma } \left( (\sigma ^{rr}-\sigma ^{ss}) \cos \theta - \sigma ^{r\theta }\sin \theta \right) \varvec{e}_r\\&+\dfrac{\varGamma }{\gamma } \left( \sigma ^{\theta r}\cos \theta +(\sigma ^{ss}-\sigma ^{\theta \theta }) \sin \theta \right) \varvec{e}_{\theta }\\&+ 2\dfrac{\varGamma }{\gamma } (\sigma ^{rs}\cos \theta - \sigma ^{\theta s}) \sin \theta ) \varvec{e}_{s}\end{aligned}$$

The first three terms correspond to the plane and anti-plane classical equation.

$$\begin{aligned} {{\mathrm{div}}\sigma = {\mathrm{div}}_{\pi } \sigma + \dfrac{\varGamma }{\gamma } {\mathrm{div}}_{\perp } \sigma } \end{aligned}$$
(77)

For stress tensor with components \(\sigma ^{ij}= r^\alpha \varGamma ^\beta \Sigma ^{ij}(\theta )\) we have

$$\begin{aligned} {{\mathrm{div}}\sigma = \alpha r^{\alpha -1} T_{\pi }(\theta ) \varGamma ^\beta + \dfrac{\varGamma ^{\beta +1}}{\gamma } r^\alpha T_{\perp }(\theta )} \end{aligned}$$
(78)

This remark is used in the process of construction of more consistent field.

Eshelby’s momentum tensor

$$\begin{aligned} {\mathsf {\varPsi }}^{rr}&=W- \sigma ^{rr}\dfrac{\partial u}{\partial r}-\sigma ^{r\theta }\dfrac{\partial v}{\partial r}- \sigma ^{rs}\dfrac{\partial w}{\partial r}\\ {\mathsf {\varPsi }}^{\theta \theta }&=W- \sigma ^{\theta \theta }\left( \dfrac{1}{r}\dfrac{\partial v}{\partial \theta }+\dfrac{u}{r}\right) -\sigma ^{\theta r}\left( \dfrac{1}{r}\dfrac{\partial u}{\partial \theta }-\dfrac{v}{r}\right) -\sigma ^{\theta s}\dfrac{1}{r}\dfrac{\partial w}{\partial \theta }\\ {\mathsf {\varPsi }}^{ss}&= W-\sigma ^{ss}\left( \dfrac{\varGamma }{\gamma }(u\cos \theta -v\sin \theta )+\dfrac{1}{\gamma }\dfrac{\partial w}{\partial s}\right) -\sigma ^{sr}\\&\quad \left( \dfrac{1}{\gamma }\dfrac{\partial u}{\partial s}-\dfrac{w\varGamma }{\gamma }\cos \theta \right) -\sigma ^{\theta s}\left( \dfrac{1}{\gamma }\dfrac{\partial v}{\partial s}+\dfrac{w\varGamma }{\gamma }\sin \theta \right) \\ {\mathsf {\varPsi }}^{r\theta }&=-\sigma ^{rr}\left( \dfrac{1}{r}\dfrac{\partial u}{\partial \theta }-\dfrac{v}{r}\right) -\sigma ^{r\theta }\left( \dfrac{1}{r}\dfrac{\partial v}{\partial \theta }+\dfrac{u}{r}\right) -\sigma ^{rs}\dfrac{1}{\gamma }\dfrac{\partial w}{\partial s}\\ {\mathsf {\varPsi }}^{\theta r}&= -\sigma ^{\theta r}\dfrac{\partial u}{\partial r}-\sigma ^{\theta \theta }\dfrac{\partial v}{\partial r}-\sigma ^{\theta s}\dfrac{\partial w}{\partial r}\\ {\mathsf {\varPsi }}^{rs}&= -\sigma ^{rr}\left( \dfrac{1}{\gamma }\dfrac{\partial u}{\partial s}-\dfrac{w\varGamma }{\gamma }\cos \theta \right) -\sigma ^{r\theta }\left( \dfrac{1}{\gamma }\dfrac{\partial v}{\partial s}+\dfrac{w\varGamma }{\gamma }\sin \theta \right) \\&-\sigma ^{rs}\left( \dfrac{\varGamma }{\gamma }(u\cos \theta -v\sin \theta )+\dfrac{1}{\gamma }\dfrac{\partial w}{\partial s}\right) \\ {\mathsf {\varPsi }}^{sr}&= -\sigma ^{ss}\dfrac{\partial w}{\partial r}-\sigma ^{sr}\dfrac{\partial u}{\partial r}-\sigma ^{\theta s}\dfrac{\partial v}{\partial r}\\ {\mathsf {\varPsi }}^{\theta s}&= -\sigma ^{\theta \theta }\left( \dfrac{1}{\gamma }\dfrac{\partial v}{\partial s}+\dfrac{w\varGamma }{\gamma }\sin \theta \right) -\sigma ^{\theta r}\left( \dfrac{1}{\gamma }\dfrac{\partial u}{\partial s}-\dfrac{w\varGamma }{\gamma }\cos \theta \right) \\&-\sigma ^{\theta s}\left( \dfrac{\varGamma }{\gamma }(u\cos \theta -v\sin \theta )+\dfrac{1}{\gamma }\dfrac{\partial w}{\partial s}\right) \\ {\mathsf {\varPsi }}^{s\theta }&= -\sigma ^{sr}\left( \dfrac{1}{r}\dfrac{\partial u}{\partial \theta }-\dfrac{v}{r}\right) -\sigma ^{\theta s}\left( \dfrac{1}{r}\dfrac{\partial v}{\partial \theta }+\dfrac{u}{r}\right) -\sigma ^{ss}\dfrac{1}{r}\dfrac{\partial w}{\partial \theta } \end{aligned}$$

General process : case of mode I

Consider the singular part of the displacement: \(\varvec{u}_o=\sqrt{r} \dfrac{\mathrm{K}_\mathrm{I}}{2\mu } \varvec{u}_o^\mathrm{I}\) we have

$$\begin{aligned} \begin{aligned} \varvec{u}_o^\mathrm{I}(\theta )&= U_o(\theta ) \varvec{e}_r+V_o(\theta )\varvec{e}_{\theta }\\&=\frac{1}{2}\left( -\,\cos \dfrac{3\theta }{2}+(5-8 \nu )\,\cos \dfrac{\theta }{2}\right) \varvec{e}_r\\&\quad + \frac{1}{2} \left( \,\sin \dfrac{3\theta }{2}+(8\nu -7)\,\sin \dfrac{\theta }{2}\right) \varvec{e}_{\theta }\end{aligned} \end{aligned}$$
(79)

and the associated strain

$$\begin{aligned} {\varepsilon (\varvec{u}_o^\mathrm{I})= \dfrac{\mathrm{K}_\mathrm{I}}{2\mu }\dfrac{\varvec{E}^o}{\sqrt{r}} + \dfrac{\varGamma }{\gamma }\dfrac{\mathrm{K}_\mathrm{I}}{2\mu } \sqrt{r}\;E^1_{ss}\;\varvec{e}_{s}\otimes \varvec{e}_{s}} \end{aligned}$$
(80)

with

$$\begin{aligned} \begin{aligned} E^o_{rr}&= \dfrac{1}{2}U_o, \quad E^o_{\theta \theta }=U_o + \dfrac{\partial V_o}{\partial \theta } \\ E^o_{r\theta }&= \dfrac{\partial U_o}{\partial \theta }- V_o, \quad E^1_{ss}= U_o \,\cos \theta -V_o\,\sin \theta \end{aligned} \end{aligned}$$
(81)

The Cauchy stress \(\sigma \) admits the same decomposition

$$\begin{aligned} {\sigma (\varvec{u}_o)= \dfrac{\mathrm{K}_\mathrm{I}}{\sqrt{r}}\Sigma ^\mathrm{I}_{o}(\theta ) +\dfrac{\mathrm{K}_\mathrm{I}\varGamma }{\gamma }\;\sqrt{r}\; \Sigma _{o1}} \end{aligned}$$
(82)

with

$$\begin{aligned} {\Sigma _{o1} = \lambda \varvec{E}_{o1}^\mathrm{I}\mathbb {I}+2 \mu \varvec{E}_{o1}^\mathrm{I}\; \varvec{e}_{s}\otimes \varvec{e}_{s}} \end{aligned}$$
(83)

The contributions of \(\varGamma \) is not reduced to order 1, because \(1/\gamma \) has contributions to higher order:

$$\begin{aligned} {\dfrac{1}{\gamma }= 1 -r\varGamma \,\cos \theta + (r\varGamma )^2 \cos ^2\theta +...} \end{aligned}$$
(84)

The same thing occurs for \(\varvec{\varPsi }\), the order 0 is the contribution of the singular part, and the other are contributions due to the expansion of \(1/\gamma \).

For pure mode I, when \(\mathrm{K}_\mathrm{I}\) is constant, there is no contribution along \(\varvec{e}_{s}\) : \(\dfrac{1}{\gamma }\dfrac{\partial f}{\partial s}=0\) . The expressions are simpler and in particular J-integral is reduced to

$$\begin{aligned} { J= \int _{\partial A} \varvec{e}_r.\varvec{\varPsi }.\varvec{N}\gamma (R) R\mathrm{d}{\theta }+\int _A \varPsi ^{ss} \varGamma r \mathrm{d}r\mathrm{d}{\theta }} \end{aligned}$$
(85)

on the disc A with radius R, and \(\varvec{N}= -\,\cos \theta \varvec{e}_r+\,\sin \theta \varvec{e}_{\theta }\). We have finally

$$\begin{aligned} J&=\int _{\partial A} (-\varPsi ^{rr}\,\cos \theta +\varPsi ^{rs}\,\sin \theta )(1+R \varGamma ) R\mathrm{d}{\theta }\nonumber \\&\quad +\int _A \varPsi ^{ss}\varGamma r \mathrm{d}{\theta }\end{aligned}$$
(86)

It can be noticed that,

$$\begin{aligned} {\varvec{\varPsi }(\varvec{u}_o)= \varvec{\varPsi }_o + \varGamma \varvec{\varPsi }_{o1}(r,\theta )+ \varGamma ^2 \varvec{\varPsi }_{o2}(r,\theta )+...} \end{aligned}$$
(87)

The evaluation of J-integral is obtained using its definition considering \({\mathrm{div}}\varvec{\varPsi }^T\) or applying 85.

On the torus, the divergence of \(\varvec{\varPsi }(\varvec{u}_o)\) is not vanishing, because the stress \(\sigma (\varvec{u}_o)\) is not in equilibrium (17), then

$$\begin{aligned} {\mathrm{div}}\varvec{\varPsi }^T(\varvec{u}_o)&= A \left( 4-\cos {3\theta }+4\cos {2\theta }\right. \\&\qquad \left. +\cos {\theta }(9-64\nu (1-\nu ))\right) \varvec{e}_r\\&\quad A \left( \sin {3\theta }-\sin {2\theta }(-24+64\nu )\right. \\&\qquad \left. -\sin {\theta }(11-64\nu (1-\nu ))\right) \varvec{e}_{\theta }\\&+ \varGamma ^2 P_2(r,\theta ) +... \end{aligned}$$

where \(A= \dfrac{1-\nu }{16(2\nu -1)}\dfrac{\varGamma }{r}\mathrm{K}_\mathrm{I}\)

To obtain more accurate value of J-integral, we add a correction to field \(\varvec{u}_o\) in order to satisfy the equilibrium state at order 1, the additional term but be in \(r\sqrt{r}\)

$$\begin{aligned} {\varvec{u}_1= \sqrt{r} \dfrac{\mathrm{K}_\mathrm{I}}{2\mu } (\varvec{u}^\mathrm{I}_o + r \varGamma \varvec{u}_1^\mathrm{I})} \end{aligned}$$
(88)

The value of \({\mathrm{div}}\sigma (\varvec{u}_o)\) contains trigonometric functions of \(\theta /2\) and \(3\theta /2\), because \(\sigma \) is a linear function of the displacement, the correction is necessary of the form

$$\begin{aligned} \begin{aligned} \varvec{u}_1^\mathrm{I}(\theta )&= U^\mathrm{I}_1(\theta ) \varvec{e}_r+ V^\mathrm{I}(\theta ) \varvec{e}_{\theta }\\ U^\mathrm{I}_1&= U_{ct}^\mathrm{I}\,\cos \dfrac{3\theta }{2}+ U_{st}^\mathrm{I}\,\sin \dfrac{3\theta }{2}+ U_{cu}^\mathrm{I}\,\cos \dfrac{\theta }{2}+ U_{su}^\mathrm{I}\,\sin \dfrac{\theta }{2}\\ V^\mathrm{I}_1&= V_{ct}^\mathrm{I}\,\cos \dfrac{3\theta }{2}+ V_{st}^\mathrm{I}\,\sin \dfrac{3\theta }{2}+ V_{cu}^\mathrm{I}\,\cos \dfrac{\theta }{2}+ V_{su}^\mathrm{I}\,\sin \dfrac{\theta }{2}\end{aligned} \end{aligned}$$

To respect the equilibrium state \({\mathrm{div}}\sigma (\varvec{u}_1)=o(\varGamma ^2)\), we must solve a system of linear equations for the constants \(U_{ct}^\mathrm{I}, U_{st}^\mathrm{I}, U_{cu}^\mathrm{I},U_{su}^\mathrm{I}, V_{ct}^\mathrm{I},V_{st}^\mathrm{I}, V_{cu}^\mathrm{I},V_{su}^\mathrm{I}\). When we consider the boundary conditions on the crack lips, due to symmetry of the field, the system is reduced to a system of four constant, which is easily solved and we obtain (45). The state of stress \(\sigma (\varvec{u}_1)\) satisfies (\(A=\mathrm{K}_\mathrm{I}\dfrac{\varGamma ^2 \sqrt{r}}{16(2\nu -1)}\))

$$\begin{aligned} \begin{aligned}&{\mathrm{div}}\sigma (\varvec{u}_1)=\\&A\Big ((24\nu -3)\,\cos \dfrac{5\theta }{2}-12\,\cos \dfrac{3\theta }{2}\\&\qquad +(128\nu ^2-29)\,\cos \dfrac{\theta }{2}\Big )\varvec{e}_r\\&\qquad +A \Big ((24\nu -3)\,\sin \dfrac{5\theta }{2}-12 \,\sin \dfrac{3\theta }{2}\\&\qquad +(128\nu ^2-32\nu -15)\,\sin \dfrac{\theta }{2}\Big )\varvec{e}_{\theta }\end{aligned} \end{aligned}$$

For order 2, the added term has the form

$$\begin{aligned} {\varvec{u}_2= \varvec{u}_1+ \dfrac{\mathrm{K}_\mathrm{I}}{2\mu }\sqrt{r} (r\varGamma )^2 \varvec{u}_2^\mathrm{I}(\theta )} \end{aligned}$$
(89)

where \(\varvec{u}_1\) has being determined previously The additional term must be proportional to \(\sqrt{r} (r\varGamma )^2\) in order to cancel \(\sqrt{r} \) in \({\mathrm{div}}\sigma (\varvec{u}_1)\) and \(\varvec{u}_2^\mathrm{I}(\theta )\) depends now upon \(\theta /2,3\theta /2,5\theta /2\). Due to symmetry, the linear system of equations issued from \({\mathrm{div}}(\sigma (\varvec{u}_2)=o(\varGamma ^3)\) is reduced to 6 constants, and the solution is easily solved and we obtain (50).

William’s asymptotic expansion for the displacement in plane strain

The displacement takes the formal form

$$\begin{aligned} \varvec{u}= \sqrt{r} \sum _{p\alpha } k_{p\alpha } r^p \left( u^\alpha _p(\theta ) \varvec{e}_r+ v^\alpha _p(\theta ) \varvec{e}_{\theta }+w^\alpha _p(\theta ) \varvec{e}_{s}\right) \end{aligned}$$

where the components \((u^\alpha _p,v^\alpha _p,w^\alpha _p)\) depend on the mode of fracture \(\alpha \).

Mode I.

$$\begin{aligned} u_p(\theta )= & {} -\dfrac{1}{2}[ (1-2p)\cos \big ((2p+3) \dfrac{\theta }{2}\big ) \\&+ (8\nu -5+2p)\cos \big ((2p-1)\dfrac{\theta }{2}\big )]\\ v_p(\theta )= & {} -\dfrac{1}{2}[ (2p-1)\sin \big ((2p+3) \dfrac{\theta }{2}\big )\\&+ (8\nu -7-2p)\sin \big ((2p-1)\dfrac{\theta }{2}\big )] \end{aligned}$$

Mode II.

$$\begin{aligned} u_p(\theta )= & {} -\dfrac{1}{2}[ (3+2p)\sin \big ((2p+3) \dfrac{\theta }{2}\big ) \\&+ (5-8\nu -2p)\sin \big ((2p-1)\dfrac{\theta }{2}\big )]\\ v_p(\theta )= & {} -\dfrac{1}{2}[ (2p+3)\cos \big ((2p+3) \dfrac{\theta }{2}\big )\\&+ (8\nu -7-2p)\cos \big ((2p-1)\dfrac{\theta }{2}\big )] \end{aligned}$$

Mode III.

$$\begin{aligned} w_p = \sin (2p+1) \dfrac{\theta }{2}\end{aligned}$$

Property of the field \(\varvec{u}\). Consider the p term

$$\begin{aligned} {\varvec{u}^\alpha = \sqrt{r}\;\; r^p \varvec{u}^\alpha _p(\theta )} \end{aligned}$$
(90)

the associated strain is decomposed in two terms

$$\begin{aligned} {\varepsilon (\varvec{u}^\alpha )= \varepsilon _o^\alpha + \varGamma \varepsilon ^\alpha _1} \end{aligned}$$
(91)

where \(\varepsilon _o^\alpha \) is the plane and anti-plane strain, then we have

$$\begin{aligned} { \sigma (\varvec{u}^\alpha )= \sigma ^\alpha _o + \varGamma \sigma ^\alpha _1, \quad {\mathrm{div}}_\pi \sigma ^\alpha _o =0} \end{aligned}$$
(92)

the divergence of \(\sigma (\varvec{u}^\alpha )\) is proportional to the curvature.

Fabrikant solution

1.1 Circular crack under uniform pressure

In the frame (\(\varvec{e}_{x},\varvec{e}_{z}\)) the displacement is given as Fabrikant (1988)

$$\begin{aligned} u_x&= \dfrac{p \rho }{2\pi \mu } \Bigg \{ (1-2\nu ) \Big [\dfrac{a\sqrt{l^2_2-a^2}}{l^2_2}- \arcsin {\dfrac{a}{l_2}}\Big ]\\&+\dfrac{2 a^2 |z|\sqrt{a^2-l_1^2}}{l^2_2(l^2_2-l^2_1)} \Bigg \} \\ u_z&=\dfrac{2p}{\pi \mu }\Bigg \{ 2 (1-\nu ) \Big [ \dfrac{z}{|z|} \sqrt{a^2-l_1^2}-z \arcsin {\dfrac{a}{l_2}}\Big ] \\&+z \big [ \arcsin {\dfrac{a}{l_2}}- \dfrac{a \sqrt{l^2_2-a^2}}{l^2_2-l^2_1}\big ] \Bigg \} \end{aligned}$$

with

$$\begin{aligned} \rho= & {} 1 +\eta \cos \theta ,\quad z = \eta \sin \theta , \quad \eta =r \varGamma \\ l_1= & {} \sqrt{1+\eta \cos \theta + \dfrac{\eta ^2}{4}}-\dfrac{\eta }{2}\\ l_2= & {} \sqrt{1+\eta \cos \theta + \dfrac{\eta ^2}{4}}+\dfrac{\eta }{2} \end{aligned}$$

The solution is developed up to order 2 in \(\varGamma \)

$$\begin{aligned}&1-l_1^2 = \eta (2-\eta ) \sin ^2 \dfrac{\theta }{2}\\&l^2_2-1 = \eta (2+\eta ) \cos ^2\dfrac{\theta }{2}\\&A = \sqrt{l^2_2-1}{l^2_2}= \sqrt{\eta }\;\sqrt{1+\cos \theta }\;\\&\qquad (1-\dfrac{\eta }{4}(3+4\cos \theta ))\\&\arcsin {\dfrac{1}{l_2}}= \dfrac{\pi }{2} +\sqrt{\eta }\sqrt{\cos \theta +1}\\&\qquad (-1+\dfrac{\eta }{12}(1+4\cos \theta ))\\&\sqrt{A}-\arcsin {\dfrac{1}{l_2}}= -\dfrac{\pi }{2}+\sqrt{\eta }\;\sqrt{\cos \theta +1} \;\\&\qquad (2-\dfrac{\eta }{6}(5+8\cos \theta ))\\&\dfrac{2z}{l_2^2}= \eta \sin \theta (2-2\eta (1+\cos \theta )+...) \end{aligned}$$

with these quantities we obtain

$$\begin{aligned} U_x= & {} \dfrac{\pi }{2} (1+\eta \cos \theta ) (2\nu -1)+ \sqrt{\eta } U^0_x+ \eta \sqrt{\eta } U^1_x+ ...\\ U_z= & {} \pi \eta \sin \theta (2\nu -1) +\sqrt{\eta } U^0_z+ \eta \sqrt{\eta } U^1_z+ .. \end{aligned}$$

the components of the expansion are obtained successively,

  • at order 0 the plane strain solution

    $$\begin{aligned} U^0_x= & {} \dfrac{1}{2}((5-8\nu )\,\cos \dfrac{\theta }{2}-\,\cos \dfrac{3\theta }{2})\\ U^0_z= & {} \dfrac{1}{2}((8\nu -7) \,\sin \dfrac{\theta }{2}+\,\sin \dfrac{3\theta }{2}) \end{aligned}$$
  • at the order 1

    $$\begin{aligned} U^1_x= & {} \dfrac{1}{24}\Big (3\,\cos \dfrac{5\theta }{2}+(20-16\nu )\,\cos \dfrac{3\theta }{2}+3(8\nu -9)\,\cos \dfrac{\theta }{2}\Big )\\ U^1_z= & {} \dfrac{1}{24}\Big (-3(8\nu +1)\,\sin \dfrac{\theta }{2}+24(1-2\nu )\,\sin \dfrac{3\theta }{2}+3\,\sin \dfrac{5\theta }{2}\Big ) \end{aligned}$$

These components are decomposed into two contributions, the correction for the order 0

$$\begin{aligned} u^1_x= & {} \dfrac{1}{24}\Big (3\,\cos \dfrac{5\theta }{2}+(128\nu ^2-144\nu +34)\,\cos \dfrac{3\theta }{2}\\&\qquad +(72\nu -33)\,\cos \dfrac{\theta }{2}\Big )\\ u^1_z= & {} \dfrac{1}{24}\Big (3\,\sin \dfrac{5\theta }{2}+(128\nu ^2-144\nu +34)\,\sin \dfrac{3\theta }{2}\\&\qquad 4+(24\nu -9)\,\sin \dfrac{\theta }{2}\Big ) \end{aligned}$$

and a plane strain term as Williams had proposed for \(r\sqrt{r}\):

$$\begin{aligned} W^1_x= & {} (7-8\nu ) \,\cos \dfrac{3\theta }{2}-3 \,\cos \dfrac{\theta }{2}\\ W^1_y= & {} (5-8\nu )\,\sin \dfrac{3\theta }{2}-3 \,\sin \dfrac{\theta }{2}\\ \end{aligned}$$

Then the order one displacement is

$$\begin{aligned} U^1= u^1+\dfrac{1-8\nu }{12} W^1 \end{aligned}$$
(93)

1.2 Circular crack under uniform shear

For uniform shear, the decomposition is similar . On the crack an uniform shear is imposed

$$\begin{aligned} u_x= & {} 2\dfrac{1-\nu }{2-\nu } \dfrac{\pi }{\mu } \tau _x \sqrt{a^2 -\rho ^2},\nonumber \\ u_y= & {} 2\dfrac{1-\nu }{2-\nu } \dfrac{\pi }{\mu } \tau _y \sqrt{a^2 -\rho ^2}, \end{aligned}$$
(94)

\(\rho \) is the distance to the axis Oz. Then we introduce the stress intensity factors proposed by Williams (\(\rho =a-r\))

$$\begin{aligned} K_{II}= & {} 2\dfrac{\sqrt{2a}}{\pi } \dfrac{\tau _x}{2-\nu } \end{aligned}$$
(95)
$$\begin{aligned} K_{III}= & {} 2\dfrac{\sqrt{2a}}{\pi } \dfrac{1-\nu }{2-\nu }\tau _y \end{aligned}$$
(96)

These quantities varies along the front of the crack, a pure mode II along axis \(\varvec{e}_{x}\) becomes a pure anti-plane shear along \(\varvec{e}_{y}\). This is conformed to the relations given in (Bui 1975, 1977). The Fabrikant solution Fabrikant (1989) is written as \((A=1/(\pi \mu (2-\nu ))\)

$$\begin{aligned}&F(r,\theta ) = (-5+4\nu ) z\arcsin \dfrac{a}{l_2} + 4(1-\nu ) \sqrt{a^2-l_1^2}\\&G(r,\theta ) =\dfrac{z \sqrt{l_2^2-a^2}}{l_2^2-l_1^2} \\&\dfrac{u_x}{A}= F(r,\theta ) \tau _x + a G(r,\theta )\\&\qquad \big (\tau _x+\dfrac{l_1^2}{l_2^2} (\tau _x\cos 2\phi +\tau _y\sin 2\phi )\big )\\&\dfrac{u_y}{A}=F(r,\theta ) \tau _y +a G(r,\theta )\\&\qquad \big (\tau _y++ \frac{l_1^2}{l_2^2} (\tau _x\sin 2\phi -\tau _y\cos 2\phi )\big ) \\&\dfrac{u_z}{A} = \rho (\tau _x\cos \phi +\tau _y\sin \phi )\Big ( \frac{1-2\nu }{2}\\&\qquad (\arcsin \frac{a}{l_2} - a \frac{\sqrt{l_2^2-a^2}}{l_2^2} ) +\frac{a^2}{l_2^2} G(r,\theta ) \Big ) \end{aligned}$$

Now, we consider the normal plane to the crack front, with direction \(\varvec{T}(\phi )\). In the frame (\(-\varvec{N},\varvec{e}_{z}\)) , in this plane we have \((U,V,W)= u \dfrac{\sin \phi }{1-\nu }, v\dfrac{ \sin \phi }{1-\nu }, w\; \cos \phi ) \))

$$\begin{aligned} u= & {} -\dfrac{\varGamma }{12} r\sqrt{r} \Big ((16\nu -26)\,\sin \dfrac{5\theta }{2}+(24\nu -9)\,\sin \dfrac{3\theta }{2}\\&+(32\nu -7)\,\sin \dfrac{\theta }{2}\Big )\\&+\sqrt{r}\Big (3 \,\sin \dfrac{3\theta }{2}+(8\nu -5)\,\sin \dfrac{\theta }{2}\Big ) \\&- \dfrac{1}{2}\pi \;r (2-\nu ) \sqrt{2\varGamma } \sin 2\theta +(1-2\nu ) \dfrac{\pi }{\sqrt{2\varGamma }} \sin \theta \\ v= & {} -\dfrac{\varGamma }{12} r\sqrt{r} \Big (2(8\nu -13)\,\cos \dfrac{5\theta }{2}+3(8\nu -5)\,\cos \dfrac{3\theta }{2}\\&-(32\nu -37)\,\cos \dfrac{\theta }{2}\Big )\\&- \sqrt{r}\; \Big ( 3 \,\cos \dfrac{3\theta }{2}+(8\nu -7)\,\cos \dfrac{\theta }{2}\Big ) \\&\dfrac{1}{2}\pi \; r\; \sqrt{2\varGamma }((\nu -2) \cos 2\theta -3(1-\nu ) \cos \theta )\\&+(1-2\nu ) \dfrac{\pi }{\sqrt{2\varGamma }} \cos \theta \\ w= & {} 8 \sqrt{r} \,\sin \dfrac{\theta }{2}+ r \sqrt{r} \;\dfrac{2\varGamma }{1-\nu } ((3-2\nu ) \,\sin \dfrac{3\theta }{2}\\&+(2-\nu )\,\sin \dfrac{\theta }{2})\dfrac{\pi (5-4\nu )}{\sqrt{2}(1-\nu )} r \sqrt{\varGamma } \sin \theta \end{aligned}$$

Consider the first singular terms (\(\sqrt{r}\)), we recognize the mode II for (uv) and mode III for w. The pure mode III valid for \(\phi =0\) is changed in pure mode II at \(\phi =\pi /2\).

The displacement is decomposed into three contributions at order 1 in \(\varGamma \) :

  • a plane strain correction

  • an anti-plane strain correction,

  • a correction with coupling into plane and anti-plane solutions,

  • and additional Williams contribution proportional to \(r\sqrt{r}\)

The plane and anti-plane corrections have the form given in section 4.

For the third contribution, the anti-plane shear gives a contribution in plane strain, this is due to the fact that the stress intensity factors are non uniform and depend on \(\phi \). For given \(w_o\), the equilibrium equation in direction \(\varvec{e}_r,\varvec{e}_{\theta }\) must be satisfied, with the boundary conditions on the lips. Solving this system we obtain with ( \(K_2=\sin \phi /(1-\nu ), K_3=\cos \phi \))

$$\begin{aligned} u_1= & {} -K_2\; r \sqrt{r}\;\varGamma \dfrac{64\nu ^2-48\nu -16}{15}\,\sin \dfrac{\theta }{2}\\ v_1= & {} K_2\; r\sqrt{r}\;\varGamma \dfrac{64\nu ^2-96\nu +32}{15}\,\cos \dfrac{\theta }{2}\end{aligned}$$

In a similar way, the plane strain gives a contribution normal to the plane (equilibrium equation on direction (\(\varvec{e}_{z}\)))

$$\begin{aligned} w_1 =\dfrac{K_3}{1-\nu }\; r\sqrt{r}\;\varGamma \,\sin \dfrac{\theta }{2}\end{aligned}$$

The terms of Williams are given for \(r\sqrt{r}\) with \(n=3, p=1\) :

  • plane strain mode II

    $$\begin{aligned} u_w^{II}= & {} r \sqrt{r}\; (5 \,\sin \dfrac{5\theta }{2}+ (8\nu -3) \,\sin \dfrac{\theta }{2})\\ v_w^{II}= & {} r \sqrt{r}\; (5\,\cos \dfrac{5\theta }{2}+ (8\nu -9) \,\cos \dfrac{\theta }{2}) \end{aligned}$$
  • anti-plane mode III

    $$\begin{aligned} w_w= r\sqrt{r} \,\sin \dfrac{3\theta }{2}\end{aligned}$$
$$\begin{aligned} u^w_1= & {} (8\nu -13) u_w^{II} /120 \end{aligned}$$
(97)
$$\begin{aligned} v^w_1= & {} (8\nu -13) v_w^{II}/120 \end{aligned}$$
(98)
$$\begin{aligned} w^w_1= & {} \dfrac{(2\nu -3)}{1-\nu } w_w \end{aligned}$$
(99)

It can be noticed that this type of decomposition is conformed to the asymptotic expansion proposed in Leblond and Torlai (1992).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolz, C. Invariant integrals and asymptotic fields near the front of a curved planar crack. Int J Fract 230, 3–17 (2021). https://doi.org/10.1007/s10704-021-00552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-021-00552-9

Keywords

Navigation