Skip to main content
Log in

A phase-field model for anisotropic brittle fracturing of piezoelectric ceramics

  • Computational Mechanics
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Piezoelectric ceramics are inherently brittle materials that show electromechanical coupling under electrical and mechanical stimuli. In the last decades piezoelectric materials have garnered significant attention due to their established applications as sensors and actuators. In this context the structural reliability of such materials under varied conditions is paramount. In the present work we propose a phase-field approach to model crack propagation in a coupled electromechanical setting. The proposed framework accounts for anisotropic crack propagation by employing appropriate structural tensors that enter the crack-surface-density function as additional arguments. Appropriate choices of degradation functions allow for the accommodation of varied electrical boundary conditions along cracks. Based on experimental results available in the literature, we employ a non-associative dissipative framework in which fracturing processes are driven by the mechanical part of the coupled electromechanical driving force alone. The modeling capabilities of the proposed framework are demonstrated by a set of numerical examples in two and three spatial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. In the present context we do not account for electrostatic Maxwell-stress contributions (Landis 2004; McMeeking et al. 2007; Ricoeur and Kuna 2009) in the crack gap as we consider the crack-gap opening to be small and the crack propagation to be instantaneous. Please refer to Schneider (2007) for a more detailed discussion of this issue.

  2. Damage accumulation occurs when \(\tau = 0\). In that case it follows from (14) that \(f_{em} = c \alpha \). Given (15), the initial condition \(\alpha (t = 0) = 0\) and \(c > 0\), it directly follows that \(f_{em} \ge 0\).

  3. Please note that the vectors \({\varvec{p}}\) and \({\varvec{a}}\) do not coincide in general. While \({\varvec{p}}\) represents the anisotropy of the bulk properties, the vector \({\varvec{a}}\) represents the anisotropy associated with the fracture toughness.

  4. The individual moduli tensors will be specified in Sect. 4.

  5. Note that in the numerical implementation we add a small constant to the degradation functions to prevent ill-posedness of the problem when the material is fully ruptured.

  6. The action of the proper orthogonal tensor \({\varvec{Q}}\in {\mathcal {S}}{\mathcal {O}}(3)\) on vectors \({{\varvec{v}}}\) and tensors \({\varvec{T}}\) of order \(r > 1\) is denoted by the Rayleigh product

    figure a
  7. We recall that alternative approaches to the modeling of anisotropic fracturing are available. For example, Li et al. (2015) have formulated a high-order anisotropic phase-field model of brittle fracturing by including cubic anisotropy in the interfacial free energy. For that, the authors provide an extended Cahn–Hilliard interface model in the form of a tensorial Taylor expansion. The model is numerically implemented into a meshless method, thus allowing for higher-order continuity than standard finite-element discretizations. For further investigations on the modeling of anisotropic fracturing we also again highlight the works cited in Sect. 1.

References

  • Abdollahi A, Arias I (2011) Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Mater 59:4733–4746

    CAS  Google Scholar 

  • Abdollahi A, Arias I (2012a) Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids 60:2100–2126

    Google Scholar 

  • Abdollahi A, Arias I (2012b) Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals. Int J Fract 174:3–15

    CAS  Google Scholar 

  • Abdollahi A, Arias I (2015) Phase-field modeling of fracture in ferroelectric materials. Arch Comput Methods Eng 22(2):153–181

    Google Scholar 

  • Bent AA, Hagood NW (1997) Piezoelectric fiber composites with interdigitated electrodes. J Intell Mater Syst Struct 8(11):903–919

    Google Scholar 

  • Bent AA, Hagood NW, Rodgers JP (1995) Anisotropic actuation with piezoelectric fiber composites. J Intell Mater Syst Struct 6(3):338–349

    Google Scholar 

  • Boehler JP (1987) Application of tensor functions in solid mechanics, Vol 292 of CISM courses and lectures. Springer, Berlin

  • Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Google Scholar 

  • Bourdin B, Francfort G, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Google Scholar 

  • Bourdin B, Francfort GA, Marigo J-J (2008) Special invited exposition: the variational approach to fracture. J Elast 91:5–148

    Google Scholar 

  • Clayton JD, Knap J (2015) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169

    CAS  Google Scholar 

  • Deeg W (1980) The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph.D. Thesis, Stanford University

  • dos Lucato S, Santos E, Bahr H-A, Pham V-B, Lupascu D, Balke H, Bahr U (2002) Electrically driven cracks in piezoelectric cermaics: experiments and fracture mechanics analysis. J Mech Phys Solids 50:2333–2353

    Google Scholar 

  • Eggleston JJ, McFadden GB, Voorhees PW (2001) A phase-field model for highly anisotropic interfacial energy. Physica D 150:91–103

    CAS  Google Scholar 

  • Fang D, Liu B, Hwang K (1999) Energy analysis on fracture of ferroelectric ceramics. Int J Fract 100:401–408

    CAS  Google Scholar 

  • Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    Google Scholar 

  • Fu R, Zhang T (2000) Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J Am Ceram Soc 83(5):1215–1218

    CAS  Google Scholar 

  • Gao H, Zhang T, Tong P (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids 45:491–510

    CAS  Google Scholar 

  • Griffith AA (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Google Scholar 

  • Griffith AA (1924) The theory of rupture. In Biezeno CB, Burgers JM (eds) Proceedings of the first international congress for applied mechanics, Delft, pp 55–63

  • Hakim V, Karma A (2005) Crack path prediction in anisotropic brittle materials. Phys Rev Lett 95:235501-1–4

    Google Scholar 

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368

    CAS  Google Scholar 

  • Halphen B, Nguyen QS (1975) Sur les matériaux standard généralisés. J mécanique 14:39–63

    Google Scholar 

  • Jaffe B, Cook W, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  • Jiang Y, Zhang Y, Liu B, Fang D (2009) Study on crack propagation in ferroelectric single crystal under electric loading. Acta Mater 57(5):1630–1638

    CAS  Google Scholar 

  • Karma A, Kessler D, levine H (2001) Phase-field model of mode iii dynamic fracture. Phys Rev Lett 87(4):1–4

    Google Scholar 

  • Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634

    Google Scholar 

  • Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384

    Google Scholar 

  • Kuna M (2010) Fracture mechanics of piezoelectric materials—where are we right now? Eng Fract Mech 77:309–326

    Google Scholar 

  • Landis C (2004) Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 4:6291–6315

    Google Scholar 

  • Li B, Peco C, Millán D, Arias I, Arroyo M (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Methods Eng 102:711–727

    Google Scholar 

  • Li W, McMeeking M, Landis C (2008) On the crack face boundary conditions in electromechanical fracture and an experimental protocol for determining energy release rates. Eur J Mech A Solids 27:285–301

    Google Scholar 

  • Linder C, Miehe C (2012) Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics. J Mech Phys Solids 60(5):882–903

    CAS  Google Scholar 

  • Linder C, Zhang X (2014) Three-dimensional finite elements with embedded strong discontinuities to model failure in electromechanical coupled materials. Comput Methods Appl Mech Eng 273:143–160

    Google Scholar 

  • Linder C, Rosato D, Miehe C (2011) New finite elements with embedded strong discontinuities for the modeling of failure in electromechanical coupled solids. Comput Methods Appl Mech Eng 200(1–4):141–161

    Google Scholar 

  • Lines M, Glass A (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, London

    Google Scholar 

  • Lynch CS (1998) Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field. Acta Mater 46(2):599–608

    CAS  Google Scholar 

  • McMeeking R, Landis C, Jimenez S (2007) A principle of virtualwork for combined electrostatic and mechanical loading of materials. Int J Non-Linear Mech 42:831–838

    Google Scholar 

  • McMeeking R (1999) Crack tip energy release rate for a piezoelectric compact tension specimen. Eng Fract Mech 64:217–244

    Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010b) A phase field model of electromechanical fracture. J Mech Phys Solids 58(10):1716–1740

    CAS  Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010c) Thermodynamically consistent phase-field models of fracture. Int J Numer Methods Eng 83(10):1273–1311

    Google Scholar 

  • Moulson A, Herbert J (2003) Electroceramics: materilas, properties, applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Nguyen T-T, Réthoré J, Yvonnet J, Baietto M-C (2017) Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials. Comput Mech 60:289–314

    Google Scholar 

  • Pak Y (1990) Crack extension force in a piezoelectric material. J Appl Mech 57:647–653

    Google Scholar 

  • Park S, Sun C-T (1995) Fracture criteria for piezoelectric ceramics. J Am Ceram Soc 78:1475–1480

    CAS  Google Scholar 

  • Parton V (1976) Fracture mechanics of piezoelectric materials. Acta Astronaut 3(9):671–683

    Google Scholar 

  • Ricoeur A, Kuna M (2003) Influence of electric fields on the fracture of ferroelectric ceramics. J Eur Ceram Soc 23(8):1313–1328

    CAS  Google Scholar 

  • Ricoeur A, Kuna M (2009) Electrostatic tractions at crack faces and their influence on the fracture mechanics of piezoelectrics. Int J Fract 157(1–2):3

    Google Scholar 

  • Ricoeur A, Gellmann R, Wang Z (2015) Influence of inclined electric fields on the effective fracture toughness of piezoelectric ceramics. Acta Mech 226(2):491–503

    Google Scholar 

  • Schneider G (2007) Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Ann Rev Mater Res 37:491–538

    CAS  Google Scholar 

  • Schröder J, Gross D (2004) Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch Appl Mech 73(8):533–552

    Google Scholar 

  • Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40(2):401–445

    Google Scholar 

  • Sekerka RF (2005) Analytical criteria for missing orientations on three-dimensional equilibrium shapes. J Cryst Growth 275:77–82

    CAS  Google Scholar 

  • Shanthraj P, Svendsen B, Sharma L, Roters F, Raabe D (2017) Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. J Mech Phys Solids 99:19–34

    CAS  Google Scholar 

  • Shindo Y, Murakami H, Horiguchi K, Narita F (2002) Evaluation of electric fracture properties of piezoelectric ceramics using the finite element and single-edge precracked-beam methods. J Am Ceram Soc 85(5):1243–1248

    CAS  Google Scholar 

  • Suo Z, Kuo C, Barnett D, Willis J (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40(4):739–765

    Google Scholar 

  • Teichtmeister S, Kienle D, Aldakheel F, Keip M-A (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Non-Linear Mech 97:1–21

    Google Scholar 

  • Tobin AG, Pak E (1993) Effect of electric fields on fracture behavior of PZT ceramics. In: Smart structures and materials 1993: smart materials. International Society for Optics and Photonics, Vol 1916, pp 78–86

  • Torabi S, Lowengrub J (2012) Simulating interfacial anisotropy in thin-film growth using an extended Cahn–Hilliard model. Phys Rev E 85:041603-1–16

    Google Scholar 

  • Torabi S, Lowengrub J, Voigt A, Wise S (2009) A new phase-field model for strongly anisotropic systems. Proc R Soc A 465:1337–1359

    Google Scholar 

  • Wang H, Singh RN (1997) Crack propagation in piezoelectric ceramics: effects of applied electric fields. J Appl Phys 81(11):7471–7479

    CAS  Google Scholar 

  • Wilson ZA, Borden MJ, Landis CM (2013) A phase-field model for fracture in piezoelectric ceramics. Int J Fract 183(2):135–153

    CAS  Google Scholar 

  • Xu B-X, Schrade D, Gross D, Müller R (2010) Fracture simulation of ferroelectrics based on the phase field continuum and damage variable. Int J Fract 166:163–172

    Google Scholar 

Download references

Acknowledgements

Funding was provided by German Research Foundation (Grant no. KE 1849/2-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Keip.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridhar, A., Keip, MA. A phase-field model for anisotropic brittle fracturing of piezoelectric ceramics. Int J Fract 220, 221–242 (2019). https://doi.org/10.1007/s10704-019-00391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-019-00391-9

Keywords

Navigation