Skip to main content
Log in

An efficient numerical method for quasi-static crack propagation in heterogeneous media

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The paper is devoted to the problem of slow crack growth in heterogeneous media. The crack is subjected to arbitrary pressure distribution on the crack surface. The problem relates to construction of the so-called equilibrium crack. For such a crack, stress intensity factors are equal to the material fracture toughness at each point of the crack contour. The crack shape and size depend on spatial distributions of the elastic properties and fracture toughness of the medium, and the type of loading. In the paper, attention is focused on the case of layered elastic media when a planar crack propagates orthogonally to the layers. The problem is reduced to a system of surface integral equations for the crack opening vector and volume integral equations for stresses in the medium. For discretization of these equations, a regular node grid and Gaussian approximating functions are used. For iterative solution of the discretized equations, fast Fourier transform technique is employed. An iteration process is proposed for the construction of the crack shape in the process of crack growth. Examples of crack evolution for various properties of medium and types of loading are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Duarte C, Hamzeh O, Liszka T, Tworzydlo W (2001) A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190(15):2227–2262

    Article  Google Scholar 

  • Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    Google Scholar 

  • Gao H, Rice J (1989) A first-order perturbation analysis of crack trapping by arrays of obstacles. J Appl Mech 56:828–836

    Article  Google Scholar 

  • Golub G, van Loan C (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, London

    Google Scholar 

  • Kanaun S (1981) Elastic problem for 3D-anisotropic medium with a crack. Appl Math Mech (PMM) 45:361–370

    Article  Google Scholar 

  • Kanaun S (2007) Fast solution of the 3D elasticity problem for a planar crack of arbitrary shape. Int J Fract 148:435–442

    Article  Google Scholar 

  • Kanaun S (2017) Hydraulic fracture crack propagation in an elastic medium with varying fracture toughness. Int J Eng Sci 120:15–30

    Article  Google Scholar 

  • Kanaun S, Levin V (2008) Self-consistent methods for composites I, static problems. Springer, Dordrecht

    Google Scholar 

  • Kanaun S, Markov A (2017) Discrete and three-parameter models of hydraulic fracture crack growth. WSEAS Trans Appl Theor Mech 12:147–156

    Google Scholar 

  • Kanaun S, Pervago E (2011) Combining self-consistent and numerical methods for the calculation of elastic fields and effective properties of 3D-matrix composites with periodic and random microstructures. Int J Eng Sci 49(5):420–442

    Article  Google Scholar 

  • Kanaun S, Markov A, Babaii S (2013) An efficient numerical method for the solution of the second boundary problem of elasticity for 3D-bodies with cracks. Int J Fract 183(2):169–186

    Article  Google Scholar 

  • Knight M, Wrobel L, Henshall J, De Lacerda L (2002) A study of the interaction between a propagating crack and an uncoated/coated elastic inclusion using the BE technique. Int J Fract 114(1):47–61

    Article  Google Scholar 

  • Kunin I (1983) The theory of elastic media with microstructure II. Springer, Berlin

    Google Scholar 

  • Lei J, Wang Y, Huang Y, Yang Q, Zhang C (2012) Dynamic crack propagation in matrix involving inclusions by a time-domain BEM. Eng Anal Bound Elem 36(5):651–657

    Article  Google Scholar 

  • Markov A, Kanaun S (2017) Interactions of cracks and inclusions in homogeneous elastic media. Int J Fract 206(1):35–48

    Article  Google Scholar 

  • Maz’ya V, Schmidt G (2007) Approximate approximation, mathematical surveys and monographs, vol 141. American Math Society, Providence

    Book  Google Scholar 

  • Mi Y, Aliabadi M (1994) Three-dimensional crack growth simulation using BEM. Comput Struct 52(5):871–878

    Article  Google Scholar 

  • Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  • Moes N, Dolbow J, Belytschko T (1999) Elastic crack growth in finite elements without remeshing. Int J Numer Methods Eng 46:131–150

    Article  Google Scholar 

  • Movchan A, Gao H, Willis J (1998) On perturbations of plane cracks. Int J Solids Struct 35(26–27):3419–3453

    Article  Google Scholar 

  • Press W, Flannery B, Teukolsky S, Wetterling W (1992) Numerical recipes in FORTRAN: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramanathan S, Ertas D, Fisher D (1997) Quasistatic crack propagation in heterogeneous media. Phys Rev Lett 79(5):873–877

    Article  Google Scholar 

  • Remmers J, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31(1):69–77

    Article  Google Scholar 

  • Sneddon I (1946) The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc R Soc Lond 187(1009):229–260

    Article  Google Scholar 

  • Sukumar N, Moes N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11):1549–1570

    Article  Google Scholar 

  • Williams R, Phan A, Tippur H, Kaplan T, Gray L (2007) SGBEM analysis of crack-particle(s) interactions due to elastic constants mismatch. Eng Fract Mech 74(3):314–331

    Article  Google Scholar 

  • Yang B, Ravi-Chandar K (1998) A single-domain dual-boundary-element formulation incorporating a cohesive zone model for elastostatic cracks. In: Recent advances in fracture mechanics, pp 115–144. Springer, Netherlands

  • Zhuang Z, Cheng B (2011) Equilibrium state of mode-I sub-interfacial crack growth in bi-materials. Int J Fract 170(1):27–36

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACYT (Consejo Nacional de Ciencia y Tecnologia, Mexico), Project 243124, CB2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Markov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The integral \({\varGamma }_{ijkl}(x)\) in Eq. (16) can be calculated in explicit analytical form. In the basis of six linearly independent four rank tensors \(E_{ijkl}^{\left( p\right) }(m)\)

$$\begin{aligned} E_{ijkl}^{1}= & {} \delta _{ik}\delta _{jl}|_{(ij)(kl)}\,, \;\;E_{ijkl}^{2}=\delta _{ij}\delta _{kl}\,,\nonumber \\ E_{ijkl}^{3}= & {} \delta _{ij}m_{k}m_{l}\,, \end{aligned}$$
(A1)
$$\begin{aligned} E_{ijkl}^{4}= & {} m_{i}m_{j}\delta _{kl}\,,\;\; E_{ijkl}^{5}=m_{i}m_{k}\delta _{jl}|_{(ij)(kl)}\,,\nonumber \\ E_{ijkl}^{6}= & {} m_{i}m_{j}m_{k}m_{l},\, \end{aligned}$$
(A2)

the tensor \({\varGamma }_{ijkl}(x)\) takes the form

$$\begin{aligned} {\varGamma }_{ijkl}(x)=-\,2\mu _{0}\sum \limits _{p=1}^{6}g^{\left( p\right) }\left( \frac{\left| x\right| }{h}\right) E_{ijkl}^{p}(m), \quad m= \frac{x}{\left| x\right| }. \end{aligned}$$
(A3)

Scalar functions \(g^{\left( p\right) }(z)\) (\(p=1,2,\ldots ,6\)) in this equation are expressed in terms of three scalar functions \(\psi _{0}(z),\psi _{1}(z),\psi _{2}(z)\)

$$\begin{aligned} g^{1}= & {} \left( \psi _{0}-2\psi _{1}\right) +4\kappa _{0}\psi _{2}, \nonumber \\ g^{2}= & {} \left( 2\kappa _{0}-1\right) \left( \psi _{0}-2\psi _{1}\right) +2\kappa _{0}\psi _{2}, \end{aligned}$$
(A4)
$$\begin{aligned} g^{3}= & {} g^{4}=\left( 1-2\kappa _{0}\right) \phi _{0}+2\kappa _{0}\phi _{1}, \nonumber \\ g^{5}= & {} -\frac{1}{2}\left( \phi _{0}-16\kappa _{0}\phi _{1}\right) , { \ \ }g^{6}=2\kappa _{0}\phi _{2}. \end{aligned}$$
(A5)
$$\begin{aligned} \phi _{0}= & {} \psi _{0}-3\psi _{1}, \ \phi _{1}=\psi _{0}-5\psi _{1},\nonumber \\ \phi _{2}= & {} \psi _{0}-10\psi _{1}+35\psi _{2}, \end{aligned}$$
(A6)
$$\begin{aligned} \psi _{0}\left( z\right)= & {} \frac{1}{\left( \pi H\right) ^{3/2}}\exp \left( -\, \frac{z^{2}}{H}\right) ,\end{aligned}$$
(A7)
$$\begin{aligned} \psi _{1}\left( z\right)= & {} \frac{1}{4\pi ^{3/2}z^{3}\sqrt{H}}\left[ -\,2z\exp \left( -\,\frac{z^{2}}{H}\right) \right. \nonumber \\&\left. + \,\sqrt{\pi H}erf\left( \frac{z}{\sqrt{H}}\right) \right] ,\end{aligned}$$
(A8)
$$\begin{aligned} \psi _{2}\left( z\right)= & {} \frac{1}{16\pi ^{2}z^{5}}\left[ 6\sqrt{\pi H}z\exp \left( -\frac{z^{2}}{H}\right) \right. \nonumber \\&\left. +\,\pi \left( -3H+2z^{2}\right) erf\left( \frac{z}{\sqrt{H}} \right) \right] . \end{aligned}$$
(A9)

Here \(erf\left( z\right) \) is the probability integral

$$\begin{aligned} erf(z)=\frac{2}{\sqrt{\pi }}\int \nolimits _{0}^{z}\exp ( -\,t^{2})dt. \end{aligned}$$
(A10)

The integral \(I_{ijk}(x_{1},x_{2},x_{3})\) in Eq. (25) is presented in the form

$$\begin{aligned} I_{ijk}(x_{1},x_{2},x_{3})= & {} \iint \limits _{-\infty }^{\ \ \infty }S_{ijk3}(x_{1}-x_{1}^{\prime },x_{2}-x_{2}^{\prime },x_{3})\nonumber \\&\cdot \exp \left[ -\frac{(x_{1}^{\prime 2}+x_{2}^{\prime 2})}{h^{2}H}\right] dx_{1}^{\prime }x_{2}^{\prime }.\nonumber \\ \end{aligned}$$
(A11)

Calculation of the double integral in eq (29) yields the following equation for \(I_{ijk}(\varsigma _{1},\varsigma _{2},\varsigma _{3})\):

$$\begin{aligned}&I_{ijk}(x_{1},x_{2},x_{3}) \nonumber \\&\quad =I_{ijk}(r,x_{3})=-\,s_{1}q_{(i}\theta _{j)k}+s_{2}\theta _{ij}q_{k} \nonumber \\&\qquad +\, s_{3}n_{(i}\theta _{j)k}-s_{4}\theta _{ij}n_{k}-s_{5}q_{(i}n_{j)}q_{k}+s_{6}q_{i}q_{j}n_{k}\nonumber \\&\qquad +\,s_{7}(2q_{(i}n_{j)}n_{k}+n_{i}n_{j}q_{k}) \nonumber \\&\qquad -\,s_{8}n_{i}n_{j}n_{k}-s_{9}q_{i}q_{j}q_{k}, \end{aligned}$$
(A12)
$$\begin{aligned} q_{i}= & {} \frac{x_{i}}{r}\quad \text { }\left( i=1,2\right) ;\quad r=\sqrt{ x_{1}^{2}+x_{2}^{2}},\quad q_{3}=0;\nonumber \\ \theta _{ij}= & {} \delta _{ij}-n_{i}n_{j}. \end{aligned}$$
(A13)

Here \(n_{i}=n_{i}^{(s)}\) is the normal to \({\varOmega }\) at the sth node, scalar coefficients \(s_{\alpha }=s_{\alpha }(r,x_{3})\) are

$$\begin{aligned} s_{1}= & {} 2\mu _{0}(g_{1}-4\kappa _{0}g_{2}), \nonumber \\ s_{2}= & {} 2\mu _{0}\left[ (1-2\kappa _{0})g_{1}+2\kappa _{0}g_{2}\right] , \end{aligned}$$
(A14)
$$\begin{aligned} s_{3}= & {} 2\mu _{0}(g_{3}-4\kappa _{0}g_{4}), \nonumber \\ s_{4}= & {} 2\mu _{0}\left[ (1-2\kappa _{0})g_{3}+2\kappa _{0}g_{4}\right] , \end{aligned}$$
(A15)
$$\begin{aligned} s_{5}= & {} 2\mu _{0}\left( g_{5}-4\kappa _{0}g_{6}\right) , \nonumber \\ s_{6}= & {} 2\mu _{0} \left[ (1-2\kappa _{0})g_{5}+2\kappa _{0}g_{6}\right] , \end{aligned}$$
(A16)
$$\begin{aligned} s_{7}= & {} 4\mu _{0}\kappa _{0}g_{7}, \ s_{8}=4\mu _{0}\kappa _{0}g_{8}, \ s_{9}=4\mu _{0}\kappa _{0}g_{9}. \end{aligned}$$
(A17)

Functions \(g_{1},g_{2},\ldots ,g_{9}\) in these equations are expressed in terms of five linearly independent integrals \(F_{\alpha }(r,x_{3}):\)

$$\begin{aligned} g_{1}= & {} \frac{r}{2h^{2}}\mathrm {sign}(x_{3})(F_{3}+F_{4}),\quad g_{2} = \frac{x_{3}}{ 2hr}F_{2},\nonumber \\ g_{3}= & {} \frac{1}{2h}(F_{2}-F_{1}), \end{aligned}$$
(A18)
$$\begin{aligned} g_{4}= & {} \frac{1}{4h}\left[ F_{1}+F_{2}-\frac{|x_{3}|}{h}(F_{3}+F_{4}) \right] , \nonumber \\ g_{5}= & {} \frac{1}{h}F_{2}, \end{aligned}$$
(A19)
$$\begin{aligned} g_{6}= & {} \frac{1}{2h}\left( F_{2}-\frac{|x_{3}|}{h}F_{4}\right) , \nonumber \\ g_{7}= & {} \frac{x_{3}}{2h^{2}}\left( F_{5}-4\frac{h}{r}F_{2}\right) , \end{aligned}$$
(A20)
$$\begin{aligned} g_{8}= & {} \frac{1}{2h}\left( F_{1}+\frac{|x_{3}|}{h}F_{3}\right) , \quad g_{9}=\frac{x_{3}}{ 2h^{2}}F_{5}. \end{aligned}$$
(A21)

Here \(F_{\alpha }=F_{\alpha }(r,x_{3})\) are 1D-absolutely converging integrals (\(\rho =r/h\), \(z=x_{3}/h\))

$$\begin{aligned} F_{1}(\rho ,z)= & {} \frac{1}{4\pi }\int \limits _{0}^{\infty }\exp \left( -\,k|z|- \frac{k^{2}H}{4}\right) J_{0}(k\rho )k^{2}dk, \end{aligned}$$
(A22)
$$\begin{aligned} F_{2}(\rho ,z)= & {} \frac{1}{4\pi }\int \limits _{0}^{\infty }\exp \left( -\,k|z|- \frac{k^{2}H}{4}\right) J_{2}(k\rho )k^{2}dk, \end{aligned}$$
(A23)
$$\begin{aligned} F_{3}(\rho ,z)= & {} \frac{1}{4\pi }\int \limits _{0}^{\infty }\exp \left( -\,k|z|- \frac{k^{2}H}{4}\right) J_{0}(k\rho )k^{3}dk, \end{aligned}$$
(A24)
$$\begin{aligned} F_{4}(\rho ,z)= & {} \frac{1}{4\pi }\int \limits _{0}^{\infty }\exp \left( -\,k|z|- \frac{k^{2}H}{4}\right) J_{2}(k\rho )k^{3}dk, \end{aligned}$$
(A25)
$$\begin{aligned} F_{5}(\rho ,z)= & {} \frac{1}{4\pi }\int \limits _{0}^{\infty }\exp \left( -\,k|z|- \frac{k^{2}H}{4}\right) J_{3}(k\rho )k^{3}dk.\nonumber \\ \end{aligned}$$
(A26)

In these equations, \(J_{n}(k\rho )\) (\(n=0,2,3\)) are Bessel functions of the first kind. Note that these functions do not depend on the node grid step h but are functions of non-dimensional variables \(\rho \) and z.

If \(x_{3}=0\), the tensor \(I_{ijk}(x_{1},x_{2},0)\) is calculated explicitly and takes the form

$$\begin{aligned} I_{ijk}(x_{1},x_{2},0)= & {} I_{ijk}(r,0) \nonumber \\= & {} s_{1}n_{(i}\theta _{j)k}-s_{2}\theta _{ij}n_{k}-s_{3}q_{(i} n_{j)}q_{k} \nonumber \\&+\, s_{4}q_{i}q_{j}n_{k}-s_{5}n_{i}n_{j}n_{k}, \end{aligned}$$
(A27)
$$\begin{aligned} q_{i}= & {} \frac{x_{i}}{r}\quad \text { }\left( i=1,2\right) , \nonumber \\ r= & {} \sqrt{x_{1}^{2}+x_{2}^{2}},\quad \text { }q_{3}=0,\nonumber \\ \theta _{ij}= & {} \delta _{ij}-n_{i}n_{j}. \end{aligned}$$
(A28)

Here the scalar coefficients \(s_{\alpha }=s_{\alpha }(r,\varsigma _{3})\) are

$$\begin{aligned} s_{1}= & {} \mu _{0}\frac{1}{h}\left[ \left( -1-2\kappa _{0}\right) F_{1}+\left( 1-2\kappa _{0}\right) F_{2}\right] , \end{aligned}$$
(A29)
$$\begin{aligned} s_{2}= & {} \mu _{0}\frac{1}{h}\left[ \left( -1+3\kappa _{0}\right) F_{1}+\left( 1-\kappa _{0}\right) F_{2}\right] , \end{aligned}$$
(A30)
$$\begin{aligned} s_{3}= & {} 2\mu _{0}\frac{1}{h}\left( 1-2\kappa _{0}\right) F_{2},\text { } s_{4}=2\mu _{0}\frac{1}{h}\left[ (1-\kappa _{0})F_{2}\right] ,\nonumber \\ s_{5}= & {} \mu _{0}\kappa _{0}\frac{2}{h}F_{1}. \end{aligned}$$
(A31)

The functions \(F_{\alpha }=F_{\alpha }(r)\) have the form

$$\begin{aligned} F_{1}(\rho )= & {} \frac{\exp (-\rho ^{2}/2H)}{2\sqrt{\pi H^{3}}} \nonumber \\&\cdot \left[ \left( 1-\frac{\rho ^{2}}{H}\right) I_{0}\left( \frac{\rho ^{2}}{2H} \right) +\frac{\rho ^{2}}{H}I_{1}\left( \frac{\rho ^{2}}{2H}\right) \right] , \end{aligned}$$
(A32)
$$\begin{aligned} F_{2}(\rho )= & {} \frac{\exp (-\rho ^{2}/2H)}{2\sqrt{\pi H^{3}}} \nonumber \\&\cdot \left[ \frac{\rho ^{2}}{H}I_{0}\left( \frac{\rho ^{2}}{2H}\right) -\left( 1+ \frac{\rho ^{2}}{H}\right) I_{1}\left( \frac{\rho ^{2}}{2H}\right) \right] .\nonumber \\ \end{aligned}$$
(A33)

In these equations, \(I_{0}(z)\) and \(I_{1}(z)\) are the first kind modified Bessel functions of order 0 and 1 correspondingly, \(\rho =r/h\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, A., Kanaun, S. An efficient numerical method for quasi-static crack propagation in heterogeneous media. Int J Fract 212, 1–14 (2018). https://doi.org/10.1007/s10704-018-0284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-018-0284-9

Keywords

Navigation