Skip to main content
Log in

On influence surfaces in material space

  • ISDMM15
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Based on reciprocity relations in material space, influence surfaces are established for the evaluation of the energy changes between interacting defects. In this way, the change of the driving force on a crack tip due to changes of the position, size and orientation of neighboring defects can be evaluated. The method enables to assess defect configurations in an elastic material in a straight-forward manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barber JR (2002) Elasticity, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  • Budiansky B, Rice JR (1973) Conservation laws and energy-release rates. ASME J Appl Mech 40:201–203

    Article  Google Scholar 

  • Eshelby J (1951) A force on an elastic singularity. Philos Trans R Soc Lond A 244:87–112

    Article  Google Scholar 

  • Evans AG, Suo Z, Wang RZ, Aksay IA, He MY, Hutchinson JW (2001) Model for the robust mechanical behavior of nacre. J Mater Res 16:2475–2484

    Article  Google Scholar 

  • Gross D (1982) Spannungsintensitätsfaktoren von Rißsystemen. Ing Arch 51:301–310

    Article  Google Scholar 

  • Günther W (1962) Über einige Randintegrale der Elastomechanik. Abh Braunschw Wiss Ges 14:53–72

    Google Scholar 

  • Gurtin ME (2000) Configurational forces as basic concepts of continuum physics. Springer, New York

    Google Scholar 

  • Herrmann G, Kienzler R (2007) Reciprocity relations in Eshelbian mechanics. Mech Res Commmun 34:338–343

    Article  Google Scholar 

  • Herrmann G, Kienzler R (2008) A reciprocity relation couples Newtonian and Eshelbian mechanics. ASME J Appl Mech 75(011017):1–5

    Google Scholar 

  • Hibbeler RC (2014) Structural analysis, 9th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kienzler R (2007) Reciprocity in fracture and defect mechanics. Int J Frac 147:3–11

    Article  Google Scholar 

  • Kienzler R, Herrmann G (2000) Mechanics in material space. Springer, Berlin

    Book  Google Scholar 

  • Kienzler R, Herrmann G (2008) Nonlinear and linearized reciprocity relations in structural configurational mechanics. Acta Mech 195:3–11

    Article  Google Scholar 

  • Knowles JK, Sternberg E (1972) On a class of conservation laws in linearized and finite elastostatics. Arch Ration Mech Anal 44:187–211

    Article  Google Scholar 

  • Krüger KH (1981) Die Randintegralmethode zur Lösung ebener Vielrißprobleme der linearen Elastostatik. PhD thesis, Tech Hochsch Darmstadt, Darmstadt, Germany

  • Lubarda VA (2011) Emission of dislocations from nanovoids under combined loading. Int J Plast 27:181–200

    Article  Google Scholar 

  • Marguerre K (1962) Elasticity, basic concepts. In: Flügge W (ed) Handbook of engineering mechanics. McGraw-Hill, New York

    Google Scholar 

  • Maugin GA (1993) Material inhomogeneities in elasticity. Chapman & Hall, London

  • Maugin GA (2011) Configurational forces. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Murck M (2013) Entwicklung von Keramik-Polymer-Schichtverbundwerkstoffen nach dem Vorbild des Perlmutts. PhD-thesis, University of Bremen, Bremen, Germany

  • Plate C, Müller R, Humbert A, Gross D (2012) Evaluation of the criticality of cracks in ice shelves using finite element simulations. The Cryosphere 6:973–984

    Article  Google Scholar 

  • Python Documentation 2.6.2 (2009) https://www.python.org/download/releases/2.6.2/

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. ASME J Appl Mech 27:379–386

    Article  Google Scholar 

  • Rice JR, Thomson R (1974) Ductile versus brittle behavior of crystals. Philos Mag 29:73–97

    Article  Google Scholar 

  • Sih GC (1973) Handbook of stress intensity factors. Lehigh University, Bethlehem

    Google Scholar 

  • Tada H, Paris PC, Irwin GR (1973) The stress analysis of cracks handbook. Del Research Corporation, Hellertown

    Google Scholar 

  • Washizu K (1982) Variational methods in elasticity and plasticity. Pergamon, Oxford

    Google Scholar 

Download references

Acknowledgments

The support by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG) under Grant KI 284-19/1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kienzler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kienzler, R., Schröder, R. On influence surfaces in material space. Int J Fract 202, 207–215 (2016). https://doi.org/10.1007/s10704-016-0149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0149-z

Keywords

Navigation