Skip to main content
Log in

Analysis of symmetric and skew-symmetric weight functions for a semi-infinite interfacial crack in transversely isotropic piezoelectric bimaterials

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper presents an analysis of symmetric and skew-symmetric weight functions for in-plane interfacial crack problems in piezoelectric bimaterials. The symmetric weight function matrix is obtained by means of the solution of a Wiener–Hopf functional equation and the skew-symmetric weight function matrix is developed by the construction of a corresponding full field solution. The explicit expressions for the symmetric and skew-symmetric weight functions are given and applied to in-plane deformation problems for a semi-infinite crack between two dissimilar piezoelectric materials. The validity of the present method in the determination of the field intensity factors is demonstrated by illustrative examples, in which both piezoelectric bimaterials and piezoelectric/elastic bimaterials are considered. It is shown that, for the present interfacial crack problem, both symmetric and skew-symmetric weight function matrices are necessary in the general integral formula for the evaluation of field intensity factors, and that the contribution of the skew-symmetric element of the applied load is not negligible in fracture analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antipov YA (1999) An exact solution of the 3-D problem of an interface semi-infinite plane crack. J Mech Phys Solids 47:1051–1093

    Article  MathSciNet  MATH  Google Scholar 

  • Arfken GB, Weber HJ (2005) Mathematical methods for physicists. Elsevier Academic Press, San Diego

    MATH  Google Scholar 

  • Beom HG, Atluri SN (1996) Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. Int J Fract 75:163–183

    Article  Google Scholar 

  • Bueckner HF (1970) A novel principle for the computation of stress intensity factors. Zeitschrift fur Angewandte Mathematik und Mechanik 50:529–546

    MathSciNet  MATH  Google Scholar 

  • Bueckner HF (1973) Field singularities and related integral representations. Mech Fract 1:239–314

    MATH  Google Scholar 

  • Chen YZ (1989) Weight function technique in a more general case. Eng Fract Mech 33:983–986

    Article  Google Scholar 

  • Chen YZ, Hasebe N (1994) Eigenfunction expansion and higher order weight functions of interface cracks. J Appl Mech 61:843–849

    Article  MATH  Google Scholar 

  • Gao CF, Wang MZ (2001) Collinear permeable cracks in thermopiezoelectric materials. Mech Mater 33:1–9

    Article  Google Scholar 

  • Gao H (1991) Weight function analysis of interface crack: mismatch versus oscillation. J Appl Mech 58:931–938

    Article  MATH  Google Scholar 

  • Gao H (1992) Weight function method for interface cracks in anisotropic biomaterials. Int J Fract 56:138–158

    Article  Google Scholar 

  • Gu B, Yu SW, Feng XQ (2002) Transient response of an interface crack between dissimilar piezoelectric layers under mechanical impacts. Int J Solids Struct 39:1743–1756

    Article  MATH  Google Scholar 

  • Herrmann KP, Loboda VV, Govorukha VB (2001) On contact zone models for an electrically impermeable interface crack in a piezoelectric bimaterial. Int J Fract 111:203–227

    Article  Google Scholar 

  • Hu K, Fu J, Yang Z (2014) Moving Dugdale type crack along the interface of two dissimilar piezoelectric materials. Theor Appl Fract Mech 74:157–163

    Article  Google Scholar 

  • Labbens RC, Heliot J, Pellisier-Tanon A (1976) Weight functions for three-dimensional crack problems. Cracks Fract. In: ASTM STP, 601. ASTM, Philadelphia, pp 448–467

  • Labbens RC, Pellisier-Tanon A, Heliot J (1975) Practical method for calculation stress intensity factors through weight functions. Mech Crack Growth. In: ASTM STP, 590. ASTM, Philadelphia, pp 368–385

  • Lazarus V, Leblond J (1998) Three-dimensional crack-face weight functions for the semi-infinite interface crack-I: variation of the stress intensity factors due to some small perturbation of the crack front. J Mech Phys Solids 46:489–511

    Article  MathSciNet  MATH  Google Scholar 

  • Ma LF, Chen YH (2001) Weight functions for interface cracks in dissimilar anisotropic piezoelectric materials. Int J Fract 110:263–279

    Article  Google Scholar 

  • Ma LF, Chen YH (2004) Weight functions for interface cracks in dissimilar anisotropic materials. Acta Mech Sin 20:82–88

    Article  Google Scholar 

  • McMeeking R, Ricoeur A (2003) The weight function for cracks in piezoelectrics. Int J Solids Struct 40:6143–6162

    Article  MATH  Google Scholar 

  • Morini L, Piccolroaz A, Mishuris G, Radi E (2013) Integral identities for a semi-infinite interfacial crack in anisotropic elastic bimaterials. Int J Solids Struct 50:1437–1448

    Article  Google Scholar 

  • Morini L, Radi E, Movchan AB, Movchan NV (2012) Stroh formalism in analysis of skew-symmetric and symmetric weight functions for interfacial cracks. Math Mech Solids 18:135–152

    Article  MathSciNet  MATH  Google Scholar 

  • Narita F, Yoshida M, Shindo Y (2004) Electroelastic effect induced by electrode embedded at the interface of two piezoelectric half-planes. Mech Mater 36:999–1006

    Article  Google Scholar 

  • Ou ZC, Wu XJ (2003) On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int J Solids Struct 40:7499–7511

    Article  MATH  Google Scholar 

  • Ou ZC, Chen YH (2004) Interface crack problem in elastic/piezoelectric bimaterials. Int J Fract 130:427–454

    Article  Google Scholar 

  • Paris PC, McMeeking RM (1975) Efficient finite element methods for stress intensity factors using weight function. Int J Fract 11:R354–356

  • Paris PC, McMeeking RM, Tada H (1976) The weight function method for determining stress intensity factors. Cracks Fract. In: ASTM STP, 601. ASTM, Philadelphia, pp 471–489

  • Parks DM, Kamenetzky EM (1979) Weight functions from virtual crack extension. Int J Numer Methods Eng 14:1693–1706

    Article  MATH  Google Scholar 

  • Piccolroaz A, Mishuris G, Movchan AB (2007) Evaluation of the Lazarus–Leblond constants in the asymptotic model of the interfacial wavy crack. J Mech Phys Solids 55:1575–1600

    Article  MathSciNet  MATH  Google Scholar 

  • Piccolroaz A, Mishuris G, Movchan AB (2009) Symmetric and skew-symmetric weight functions in 2D perturbation models for semi-infinite interfacial cracks. J Mech Phys Solids 57:1657–1682

    Article  MathSciNet  MATH  Google Scholar 

  • Piccolroaz A, Mishuris G (2013) Integral identities for a semi-infinite interfacial crack in 2D and 3D elasticity. J Elast 110:117–140

    Article  MathSciNet  MATH  Google Scholar 

  • Rice JR (1972) Some remarks on elastic crack-tip stress fields. Int J Solids Struct 8:751–758

    Article  MATH  Google Scholar 

  • Sham TL (1989) The theory of higher order weight functions for linear elastic plane problems. Int J Solids Struct 25:357–380

    Article  MATH  Google Scholar 

  • Sham TL, Zhou Y (1989) Weight function in two-dimensional bodies with arbitrary anisotropy. Int J Fract 40:13–41

    Article  MathSciNet  Google Scholar 

  • Suo Z (1990) Singularities, interfaces and cracks in dissimilar anisotropic media. Proc R Soc A Math Phys 427:331–358

    MathSciNet  MATH  Google Scholar 

  • Suo Z, Kuo CM, Barnett DM (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40:739–765

    Article  MathSciNet  MATH  Google Scholar 

  • Vanderglas ML (1978) A stiffness derivative finite element technique for determination of influence functions. Int J Fract 14:R291–294

    Google Scholar 

  • Wang BBL, Sun YG, Han JC, Du SY (2009) An interface electrode between two piezoelectric layers. Mech Mater 41:1–11

    Article  Google Scholar 

  • Willis J, Movchan A (1995) Dynamic weight functions for a moving crack. I. Mode I loading. J Mech Phys Solids 43:319–341

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Support from the National Natural Science Foundation of China (Grant Nos. 11572358, 10772123 and 11072160) and the Training Program for Leading Talent in University Innovative Research Team in Hebei Province (LJRC006) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. K. L. Su or W. J. Feng.

Appendix A

Appendix A

Although for most \(\varepsilon \)-class piezoelectric bimaterials and piezoelectric/elastic bimaterials the eigenvectors \(\mathbf{w}\) take the form set out in Eq. (49), a minority of \(\varepsilon \)-class bimaterials lead to eigenvectors w with the following structures (Ou and Wu 2003; Ou and Chen 2004)

$$\begin{aligned} \mathbf{w}=\left\{ {{\begin{array}{lll} {l_1 }&{} {\hbox {i}m_1 }&{} {\hbox {i}n_1 } \\ \end{array} }} \right\} ^{\mathrm{T}},\mathbf{w}_3 =\left\{ {{\begin{array}{lll} 0&{} {m_3 }&{} {n_3 } \\ \end{array} }} \right\} ^{\mathrm{T}}, \end{aligned}$$
(88)

where \(l_1, m_i \) and \(n_i \left( {i=1,3} \right) \) are real. Since \(\mathbf{w}_3 \) completely coincide with Eq. (49), all the variables related to \(\mathbf{w}_3\) should have the same form as those in the previous section; for brevity, they will not be provided herein. Also, in this appendix, if no special explanation is given, all variables have the same form as those in the previous text.

Correspondingly, introducing \(\mathbf{U}^{i}=\left\{ {{\begin{array}{lll} {U_1^i }&{} {U_2^i }&{} {U_3^i } \\ \end{array} }} \right\} ^{\mathrm{T}}\) and tractions \(\varvec{\Sigma }^{i}=\left\{ {{\begin{array}{lll} {\Sigma _1^i }&{} {\Sigma _2^i }&{} {\Sigma _3^i } \\ \end{array} }} \right\} ^{\mathrm{T}} \quad \left( {i=1,2,3} \right) \) and taking \(C_I =1, C_{II} =C_D =0\) and \(C_{II} =1, C_I =C_D =0\) and \(C_D =1, C_I =C_{II} =0\), respectively, one gets

$$\begin{aligned} \varvec{\Sigma }^{1}({x_1 })= & {} \frac{\left( {-x_1 } \right) ^{-\frac{3}{2}}}{\sqrt{2\pi }}\left\{ {\begin{array}{l} l_1 \left( {\left( {-x_1 } \right) ^{\mathrm{i}\varepsilon }+\left( {-x_1 } \right) ^{-{\mathrm{i}}\varepsilon }} \right) \\ -\hbox {i}m_1 \left( {\left( {-x_1 } \right) ^{\mathrm{i}\varepsilon }-\left( {-x_1 } \right) ^{-{\mathrm{i}}\varepsilon }} \right) \\ -\hbox {i}n_1 \left( {\left( {-x_1 } \right) ^{\mathrm{i}\varepsilon }-\left( {-x_1 } \right) ^{-{\mathrm{i}}\varepsilon }} \right) \\ \end{array}} \right\} ,\nonumber \\ \varvec{\Sigma }^{2}({x_1 })= & {} \frac{\left( {-x_1 } \right) ^{-\frac{3}{2}}}{\sqrt{2\pi }}\left\{ {\begin{array}{l} \hbox {i}l_1 \left( {\left( {-x_1 } \right) ^{\mathrm{i}\varepsilon }-\left( {-x_1 } \right) ^{-{\mathrm{i}}\varepsilon }} \right) \\ m_1 \left( {\left( {-x_1 } \right) ^{\mathrm{i}\varepsilon }+\left( {-x_1 } \right) ^{-{\mathrm{i}}\varepsilon }} \right) \\ n_1 \left( {\left( {-x_1 } \right) ^{\mathrm{i}\varepsilon }+\left( {-x_1 } \right) ^{-{\mathrm{i}}\varepsilon }} \right) \\ \end{array}} \right\} ,\nonumber \\ \end{aligned}$$
(89)

and their Fourier transforms are

$$\begin{aligned} \left( {\hat{\varvec{\Sigma }}^{1}} \right) ^{(-)}(\xi )= & {} \frac{2\xi _-^{\frac{1}{2}} }{1+4\varepsilon ^{2}}\left\{ {\begin{array}{l} \hbox {i}l_1 \left( {\omega +\rho } \right) \\ m_1 \left( {\omega -\rho } \right) \\ n_1 \left( {\omega -\rho } \right) \\ \end{array}} \right\} ,\nonumber \\ \left( {\hat{\varvec{\Sigma }}^{2}} \right) ^{(-)}(\xi )= & {} \frac{2\xi _-^{\frac{1}{2}} }{1+4\varepsilon ^{2}}\left\{ {\begin{array}{l} l_1 \left( {-\omega +\rho } \right) \\ \hbox {i}m_1 \left( {\omega +\rho } \right) \\ \hbox {in}_1 \left( {\omega +\rho } \right) \\ \end{array}} \right\} , \end{aligned}$$
(90)

where \(\omega \) and \(\rho \) have the same form as Eq. (52). The Fourier transforms of the three independent symmetric and skew-symmetric weight functions are consistent with Eqs. (53) and (54).

The symmetric weight function \([\mathbf{U}]({x_1 })\) is equal to zero for \(x_1 <0\), and for \(x_1 >0\) it takes the form

$$\begin{aligned} \left\{ {{\begin{array}{lll} {\left[ {\mathbf{U}^{1}} \right] ^{(+)}}&{} {\left[ {\mathbf{U}^{2}} \right] ^{(+)}}&{} {\left[ {\mathbf{U}^{3}} \right] ^{(+)}} \\ \end{array} }} \right\} =-\bar{\mathbf{H}}\left\{ {{\begin{array}{lll} {\varvec{\Xi }^{1}}&{} {\varvec{\Xi }^{2}}&{} {\varvec{\Xi }^{3}} \\ \end{array} }} \right\} ,\nonumber \\ \end{aligned}$$
(91)

where

$$\begin{aligned} \varvec{\Xi }^{1}= & {} \frac{x_1^{-\frac{1}{2}} }{\sqrt{2\pi }\left( {1+4\varepsilon ^{2}} \right) c_1 c_2 }\left\{ {\begin{array}{l} \hbox {i}l_1 \left( {\tilde{\omega }+\tilde{\rho }} \right) \\ m_1 \left( {\tilde{\omega }-\tilde{\rho }} \right) \\ n_1 \left( {\tilde{\omega }-\tilde{\rho }} \right) \\ \end{array}} \right\} ,\nonumber \\ \varvec{\Xi }^{2}= & {} \frac{x_1^{-\frac{1}{2}} }{\sqrt{2\pi }\left( {1+4\varepsilon ^{2}} \right) c_1 c_2 }\left\{ {\begin{array}{l} l_1 \left( {-\tilde{\omega }+\tilde{\rho }} \right) \\ \hbox {i}m_1 \left( {\tilde{\omega }+\tilde{\rho }} \right) \\ \hbox {in}_1 \left( {\tilde{\omega }+\tilde{\rho }} \right) \\ \end{array}} \right\} . \end{aligned}$$
(92)

The skew-symmetric weight function \(\left\langle \mathbf{U} \right\rangle ({x_1 })\) is equal to \(\mathbf{D}_1 [\mathbf{U}]^{(+)}({x_1 })\) for \(x_1 >0\), and for \(x_1 <0\) it takes the form

$$\begin{aligned} \left\{ {{\begin{array}{lll} {\left\langle {\mathbf{U}^{1}} \right\rangle }&{} {\left\langle {\mathbf{U}^{2}} \right\rangle }&{} {\left\langle {\mathbf{U}^{3}} \right\rangle }\\ \end{array} }} \right\} =\mathbf{D}_2 \left\{ {{\begin{array}{lll} {\varvec{\Pi }^{1}}&{} {\varvec{\Pi }^{2}}&{} {\varvec{\Pi }^{3}} \\ \end{array} }} \right\} , \end{aligned}$$
(93)

where

$$\begin{aligned} \varvec{\Pi }^{1}= & {} \frac{\left( {-x_1 } \right) ^{-\frac{1}{2}}}{\sqrt{2\pi }\left( {1+4\varepsilon ^{2}} \right) c_1 c_2 }\left\{ {\begin{array}{l} -l_1 \left( \mathop {\omega }\limits ^{\frown }+\mathop {\rho }\limits ^{\frown }\right) \\ \hbox {i}m_1 \left( \mathop {\omega }\limits ^{\frown }-\mathop {\rho }\limits ^{\frown }\right) \\ \hbox {i}n_1 \left( \mathop {\omega }\limits ^{\frown }-\mathop {\rho }\limits ^{\frown }\right) \\ \end{array}} \right\} ,\nonumber \\ \varvec{\Pi }^{2}= & {} \frac{\left( {-x_1 } \right) ^{-\frac{1}{2}}}{\sqrt{2\pi }\left( {1+4\varepsilon ^{2}} \right) c_1 c_2 }\left\{ {\begin{array}{l} \hbox {i}l_1 \left( -\mathop {\omega }\limits ^{\frown }+ \mathop {\rho }\limits ^{\frown }\right) \\ -m_1 \left( \mathop {\omega }\limits ^{\frown }+\mathop {\rho }\limits ^{\frown }\right) \\ -n_1 \left( \mathop {\omega }\limits ^{\frown }+{\mathop {\rho }\limits ^{\frown }} \right) \\ \end{array}} \right\} . \end{aligned}$$
(94)

The matrix \(\hat{{\Upsilon }}_1 \left( {\xi _+ } \right) \) in Eq. (70a) becomes

$$\begin{aligned} \hat{{\Upsilon }}_1 \left( {\xi _+ } \right) =2\left( {{\begin{array}{l@{\quad }l@{\quad }l} {\hbox {i}l_1 \gamma }&{} {\hbox {i}l_1 \vartheta }&{} 0 \\ {-m_1 \gamma }&{} {m_1 \vartheta }&{} {m_3 \left( {1+\hbox {i}} \right) } \\ {-n_1 \gamma }&{} {n_1 \vartheta }&{} {n_3 \left( {1+\hbox {i}} \right) } \\ \end{array} }} \right) , \end{aligned}$$
(95)

and correspondingly, \(\varvec{\Theta }_1 \) in Eq. (73a) is replaced by

$$\begin{aligned} \varvec{\Theta }_1 =\left( {{\begin{array}{l@{\quad }l@{\quad }l} {\frac{\left( {1-2\hbox {i}\varepsilon } \right) \chi _1 }{2\left( {1+4\varepsilon ^{2}} \right) e^{\pi \varepsilon }c_1 c_2 }}&{}\quad {\frac{e^{\pi \varepsilon }\left( {1+2\hbox {i}\varepsilon } \right) \chi _2 }{2\left( {1+4\varepsilon ^{2}} \right) c_1 c_2 }}&{}\quad 0\\ {-\frac{\hbox {i}\left( {1-2\hbox {i}\varepsilon } \right) \chi _1 }{2\left( {1+4\varepsilon ^{2}} \right) e^{\pi \varepsilon }c_1 c_2 }}&{}\quad {\frac{\hbox {i}e^{\pi \varepsilon }\left( {1+2\hbox {i}\varepsilon } \right) \chi _2 }{2\left( {1+4\varepsilon ^{2}} \right) c_1 c_2 }}&{}\quad 0 \\ 0&{}\quad 0&{}\quad {-\hbox {i}\chi _3 } \\ \end{array} }} \right) ,\nonumber \\ \end{aligned}$$
(96)

where

$$\begin{aligned} \chi _1= & {} \Delta _{21} l_1 -\Delta _{22} m_1 -\Delta _{23} n_1 ,\nonumber \\ \chi _2= & {} \Delta _{11} l_1 +\Delta _{12} m_1 +\Delta _{13} n_1,\nonumber \\ \chi _3= & {} \Delta _{32} m_3 +\Delta _{33} n_3, \end{aligned}$$
(97a)

and

$$\begin{aligned} \left( {{\begin{array}{l@{\quad }l@{\quad }l} {\Delta _{11} }&{}\quad {\Delta _{12} }&{}\quad {\Delta _{13} } \\ {\Delta _{21} }&{}\quad {\Delta _{22} }&{}\quad {\Delta _{23} } \\ {\Delta _{31} }&{}\quad {\Delta _{32} }&{}\quad {\Delta _{33} } \\ \end{array} }} \right)&\quad =&\quad \left( {{\begin{array}{lll} {l_1 }&{}\quad {m_1 }&{}\quad {n_1 } \\ {l_1 }&{}\quad {-m_1 }&{}\quad {-n_1 } \\ 0&{}\quad {m_3 }&{}\quad {n_3 } \\ \end{array} }} \right) \nonumber \\&\left( {{\begin{array}{l@{\quad }l@{\quad }l} {H_{11} }&{}\quad {H_{12} }&{}\quad {H_{13} } \\ {H_{12} }&{}\quad {H_{22} }&{}\quad {H_{23} } \\ {H_{13} }&{}\quad {H_{23} }&{}\quad {H_{33} } \\ \end{array} }} \right) .\nonumber \\ \end{aligned}$$
(97b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Su, R.K.L. & Feng, W.J. Analysis of symmetric and skew-symmetric weight functions for a semi-infinite interfacial crack in transversely isotropic piezoelectric bimaterials. Int J Fract 199, 213–227 (2016). https://doi.org/10.1007/s10704-016-0107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0107-9

Keywords

Navigation