Skip to main content
Log in

A nonlinear cohesive/friction coupled model for shear induced delamination of adhesive composite joint

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper originally proposes a nonlinear cohesive/frictional contact coupled model for the mode-II shear delamination of adhesive composite joint based on a modified Xu and Needleman’s exponential cohesive model. First, the friction is assumed to increase nonlinearly at the delamination interface when the tangential cohesive softening appears. Second, a non-associative plasticity model based on the Mohr–Coulomb frictional contact law is proposed, which includes a frictional slip criterion and a slip potential function. Third, a return mapping algorithm based on the non-associative plasticity theory is proposed to solve the updated normal and tangential tractions and stiffnesses. It is shown the tangential cohesive traction and stiffness depend on the friction and dilatancy of the delamination interface. Finally, the proposed theoretical model is implemented using three-dimensional finite element analysis by ABAQUS-UEL (user element subroutine) and demonstrated by comparing the finite element results with the analytical results for the \([0^{\circ }]_{6}\), \([\pm 30^{\circ }]_{5}\), \([\pm 45^{\circ }]_{5}\) end-notched flexure adhesive composite joints with the mode-II shear delamination. The effects of the friction coefficient, cohesive strength, normal contact stiffness and mesh size on the load–displacement curves and delamination mechanisms of composites are studied. Numerical results show the shear delamination growth is governed by the transition from the decreased tangential cohesive traction to the increased tangential friction, and the frictional effect becomes distinct after unstable delamination for angle-ply laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Abdul-Baqi A, Van der Giessen E (2002) Numerical analysis of indentation-induced cracking of brittle coatings on ductile substrates. Int J Solids Struct 39:1427–1442

    Article  Google Scholar 

  • Alfano G, Crisfield M (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736

    Article  Google Scholar 

  • Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive zone model. Int J Numer Methods Eng 68:542–582

    Article  Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  Google Scholar 

  • Bathe KJ, Chaudhary A (1985) A solution method for planar and axisymmetric contact problems. Int J Numer Methods Eng 21:65–88

    Article  Google Scholar 

  • Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177

    Google Scholar 

  • Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449

    Article  Google Scholar 

  • Broek D (1984) Elementary engineering fracture mechanics, 3rd edn. Martinus Nijhoff Publishers, The Hague

    Google Scholar 

  • Camacho G, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938

    Article  Google Scholar 

  • Camanho PP, Davila C, De Moura M (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438

    Article  Google Scholar 

  • Campilho RDSG, Banea MD, Neto JABP, da Silva LFM (2013) Modelling adhesive joints with cohesive zone models effect of the cohesive law shape of the adhesive layer. Inter J Adhes Adhes 44:48–56

    Article  Google Scholar 

  • Carlsson L, Gillespie J, Pipes R (1986) On the analysis and design of the end notched flexure (ENF) specimen for mode II testing. J Compos Mater 20:594–604

    Article  Google Scholar 

  • Chaboche J, Girard R, Schaff A (1997) Numerical analysis of composite systems by using interphase/interface models. Comput Mech 20:3–11

    Article  Google Scholar 

  • Cheng L, Guo TF (2007) Void interaction and coalescence in polymeric materials. Int J Solids Struct 44:1787–1808

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  • Fan C, Ben Jar PY, Roger Cheng JJ (2007) A unified approach to quantify the role of friction in beam-type specimens for the measurement of mode II delamination resistance of fibre-reinforced polymers. Compos Sci Technol 67:989–995

    Article  Google Scholar 

  • Foulk J, Allen D, Helms K (2000) Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput Methods Appl Mech Eng 183:51–66

    Article  Google Scholar 

  • Gao YF, Bower AF (2004) A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces. Model Simul Mater Sci Eng 12:453–463

    Article  Google Scholar 

  • Geubelle PH, Baylor JS (1998) Impact-induced delamination of composites: a 2D simulation. Compos Part B Eng 29:589–602

    Article  Google Scholar 

  • Goyal VK, Johnson ER, Davila CG (2004) Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities. Compos Struct 65:289–305

    Article  Google Scholar 

  • Guiamatsia I, Nguyen GD (2014) A thermodynamics-based cohesive model for interface debonding and friction. Int J Solids Struct 51:647–659

    Article  Google Scholar 

  • Gustafson PA, Waas AM (2009) The influence of adhesive constitutive parameters in cohesive zone finite element models of adhesively bonded joints. Int J Solids Struct 46:2201–2215

  • Harper PW, Hallett SR (2008) Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech 75:4774–4792

    Article  Google Scholar 

  • Hattiangadi A, Siegmund T (2005) An analysis of the delamination of an environmental protection coating under cyclic heat loads. Eur J Mech A/Solids 24:361–370

    Article  Google Scholar 

  • Jiang WG, Hallett SR, Green BG, Wisnom MR (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69:1982–1995

    Article  Google Scholar 

  • Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57:109–143

    Article  Google Scholar 

  • Liljedahl CDM, Crocombe AD, Wahab MA, Ashcroft IA (2006) Damage modelling of adhesively bonded joints. Int J Fract 141:147–161

    Article  Google Scholar 

  • Lin G, Geubelle P, Sottos N (2001) Simulation of fiber debonding with friction in a model composite pushout test. Int J Solids Struct 38:8547–8562

    Article  Google Scholar 

  • Liu PF (2015) Extended finite element method for strong discontinuity analysis of strain localization of non-associative plasticity materials. Int J Solids Struct 72:174–189

    Article  Google Scholar 

  • Liu PF, Hou SJ, Chu JK, Hu XY, Zhou CL, Liu YL, Zheng JY, Zhao A, Yan L (2011) Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique. Compos Struct 93:1549–1560

    Article  Google Scholar 

  • Liu PF, Islam MM (2013) A nonlinear cohesive model for mixed-mode delamination of composite laminates. Compos Struct 106:47–56

    Article  Google Scholar 

  • Liu PF, Gu ZP, Peng XQ, Zheng JY (2015) Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression. Compos Struct 131:975–986

    Article  Google Scholar 

  • Liu PF, Yang YH (2014) Finite element analysis of the competition between crack deflection and penetration of fiber-reinforced composites using virtual crack closure technique. Appl Compos Mater 21:759–771

    Article  Google Scholar 

  • Liu PF, Zheng JY (2013) On the through-the-width multiple delamination, and buckling and postbuckling behaviors of symmetric and unsymmetric composite laminates. Appl Compos Mater 20:1147–1160

    Article  Google Scholar 

  • Mi Y, Crisfield MA, Davies GA, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32:1246–1272

    Article  Google Scholar 

  • McGarry JP, Máirtín ÉÓ, Parry G, Beltz GE (2014) Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis. J Mech Phys Solids 63:336–362

    Article  Google Scholar 

  • Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833

    Article  Google Scholar 

  • Mortensen F, Thomsen OT (2002) Analysis of adhesive bonded joints: a unified approach. Compos Sci Technol 62:1011–1031

    Article  Google Scholar 

  • Noorman DC (2014) Analysis on crack propagation in adhesives and adherends. Master thesis, Delft University of Technology

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  Google Scholar 

  • Ozdil F, Carlsson L, Davies P (1998) Beam analysis of angle-ply laminate end-notched flexure specimens. Compos Sci Technol 58:1929–1938

    Article  Google Scholar 

  • Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57:891–908

    Article  Google Scholar 

  • Parrinello F, Failla B, Borino G (2009) Cohesive-frictional interface constitutive model. Int J Solids Struct 46:2680–2692

    Article  Google Scholar 

  • Parrinello F, Marannano G, Borino G, Pasta A (2013) Frictional effect in mode II delamination: experimental test and numerical simulation. Eng Fract Mech 110:258–269

    Article  Google Scholar 

  • Perić D, Owen D (1992) Computational model for 3D contact problems with friction based on the penalty method. Int J Numer Methods Eng 35:1289–1309

    Article  Google Scholar 

  • Raous M, Cangémi L, Cocu M (1999) A consistent model coupling adhesion, friction, and unilateral contact. Comput Methods Appl Mech Eng 177:383–399

    Article  Google Scholar 

  • Russell A, Street K (1982) Factors affecting the interlaminar fracture energy of graphite/epoxy laminates. Progress in science and Engineering of Composites, ICCM-IV, Tokyo, Japan, pp 279–286

  • Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938

    Article  Google Scholar 

  • Schellekens JCJ, de Borst R (1993) On the numerical integration of interface elements. Int J Numer Methods Eng 36:43–66

    Article  Google Scholar 

  • Schön J (2000) Coefficient of friction of composite delamination surfaces. Wear 237:77–89

    Article  Google Scholar 

  • Segurado J, LLorca J (2004) A new three-dimensional interface finite element to simulate fracture in composites. Int J Solids Struct 41:2977–2993

    Article  Google Scholar 

  • Serpieri R, Sacco E, Alfano G (2015) A thermodynamically consistent derivation of a frictional-damage cohesive-zone model with different mode I and mode II fracture energies. Eur J Mech A/Solids 49:13–25

    Article  Google Scholar 

  • Simo JC, Wriggers P, Schweizerhof K, Taylor R (1986) Finite deformation post-buckling analysis involving inelasticity and contact constraints. Int J Numer Methods Eng 23:779–800

    Article  Google Scholar 

  • Snozzi L, Molinari JF (2013) A cohesive element model for mixed mode loading with frictional contact capability. Int J Numer Methods Eng 93:510–526

    Article  Google Scholar 

  • Theotokoglou E, Vrettos C (2006) A finite element analysis of angle-ply laminate end-notched flexure specimens. Compos Struct 73:370–379

    Article  Google Scholar 

  • Turon A, Camanho PP, Costa J, Dávila C (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:1072–1089

    Article  Google Scholar 

  • Turon A, Davila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665–1682

    Article  Google Scholar 

  • Tvergaard V (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng A 125:203–213

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41:1119–1135

    Article  Google Scholar 

  • Van den Bosch M, Schreurs P, Geers M (2006) An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73:1220–1234

    Article  Google Scholar 

  • Weyler R, Oliver J, Sain T, Cante J (2012) On the contact domain method: a comparison of penalty and Lagrange multiplier implementations. Comput Methods Appl Mech Eng 205:68–82

    Article  Google Scholar 

  • Wisnom M, Jones M (1996) Measurement of friction in mode II delamination with through thickness compression. In: ECCM-7: seventh European conference on composite materials. Realising their commercial potential, pp 87–92

  • Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Xie D, Biggers SB Jr (2006) Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elem Anal Des 42:977–984

    Article  Google Scholar 

  • Xie D, Waas AM (2006) Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73:1783–1796

    Article  Google Scholar 

  • Xu XP, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Model Simul Mater Sci Eng 1:111–132

    Article  Google Scholar 

  • Xu YJ, Yuan H (2011) Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods. Eng Fract Mech 78:544–558

    Article  Google Scholar 

  • Yang QD, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133:107–137

    Article  Google Scholar 

  • Yang QD, Thouless M, Ward S (1999) Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J Mech Phys Solids 47:1337–1353

    Article  Google Scholar 

Download references

Acknowledgments

Dr. P. F. Liu at Zhejiang University, China as a two-year visiting research scholar at Princeton University, USA would like to thank the National Natural Science Funding of China (No. 51375435), Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures (No. SV2015-KF-09), Aerospace Support Technology Funding (No. GFJG-112108-E11402) and Aerospace Science and Technology Innovation Funding (No. GFJG-112108-E81504), and the Visiting Scholar Funding from the Chinese Scholarship Council and the “New-Star” Visiting Scholar Funding from Zhejiang University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Liu.

Appendices

Appendix 1: Cohesive/friction contact algorithm using FEA

By referring to the return mapping algorithm, the updated tangential traction \(T_t \) and the consistent tangential stiffness \(K_t \) are solved by the following Newton iterations:

  1. (a)

    After the tangential cohesive softening appears, the trial tangential traction is calculated as

    $$\begin{aligned}&T_{t }^{tr(i+1)} =T_{t }^{(i+1)} \left( {[[u]]_{t(e)}^{tr(i+1)} =[[u]]_t^{(i+1)} -[[u]]_{t(p)}^{(i)} } \right) \nonumber \\&\qquad +\,\mu \left| {T_n} \right| ^{(i+1)}\left( {[[u]]_{n(e)}^{tr(i+1)} =[[u]]_n^{(i+1)} -[[u]]_{n(p)}^{(i)} } \right) \nonumber \\ \end{aligned}$$
    (12)

    where \([[u]]_t>0\) and \([[u]]_n<0\) are the normal and tangential displacement jumps at the beginning of new (\(i+\)1)th increment, and \([[u]]_{n(p)}^{(i)} \) and \([[u]]_{t(p)}^{(i)} \) are the normal and tangential plastic displacement jumps at the end of ith increment.

  2. (b)

    If \(T_{t }^{tr(i+1)} \le \mu _s \left| {T_n} \right| ^{(i+1)}\), the tangential stiffness \(K_t \left( {[[u]]_t^{(i+1)} =[[u]]_{t(e)}^{tr(i+1)} } \right) \) and the tangential traction \(T_t =T_{t}^{tr(i+1)} =T_t \left( [[u]]_t^{(i+1)}\right. \left. =[[u]]_{t(e)}^{tr(i+1)}\right) \) in Eq. (5) are calculated. There is no plastic loading and slip for the contacted interface.

  3. (c)

    If \(T_{t }^{tr(i+1)} >\mu _s \left| {T_n} \right| ^{(i+1)}\), the plastic loading and frictional slip appear. After the initial value for \(\Delta \lambda =0\) is given, the following Newton iterations are performed to solve the updated elastic displacement jump \([[u]]_{t(e)}^{(i+1)} \) and the plastic displacement jump \([[u]]_{t(p)}^{(i+1)} \)

    $$\begin{aligned}&T_{t}^{{(i + 1)}} = \tau _{{\max }} \sqrt{2\exp \left( 1 \right) } \frac{{\left| {[[u]]_{{t(e)}}^{{(i + 1)}} } \right| }}{{\delta _{t} }}\nonumber \\&\quad \exp \left[ { - \frac{{\left( {[[u]]_{{t(e)}}^{{(i + 1)}} } \right) ^{2} }}{{\delta _{t}^{2} }}} \right] > 0,\nonumber \\&\left| {T_{n} } \right| ^{{(i + 1)}} = K_{n}\left| {\left( {[[u]]_{{n(e)}}^{{(i + 1)}} } \right) } \right| > 0, \nonumber \\&F = T_{{t}}^{{(i + 1)}} + \mu ^{{(i + 1)}} \left| {T_{n} } \right| _{{}}^{{(i + 1)}} - \mu _{s} \left| {T_{n} } \right| ^{{(i + 1)}} ,\nonumber \\&G = T_{{t}}^{{(i + 1)}} + \beta _{s} \left| {T_{n} } \right| ^{{(i + 1)}} , \nonumber \\&F+\frac{{\partial F}}{{\partial \Delta \lambda }}\hbox {d}\Delta \lambda + \cdots = 0\nonumber \\&\quad \Rightarrow \hbox {d}\Delta \lambda = - F/d_{t} > 0\nonumber \\&\quad \Rightarrow \Delta \lambda ^{{(i + 1)}} = \Delta \lambda ^{{(i)}} - F^{{(i + 1)}} /d_{t}^{{(i + 1)}} > 0, \nonumber \\&d_{t}^{{(i + 1)}} = \left. {\frac{{\partial F}}{{\partial \Delta \lambda }}} \right| ^{{(i + 1)}} \nonumber \\&\quad \qquad \;\, = K_{t}^{{(i + 1)}} + \beta _{s} \left( {\mu ^{{(i + 1)}} - \mu _{s} } \right) K_{{n}} < 0,\nonumber \\&\mu ^{{(i + 1)}} = \mu _{s} \frac{{\exp \left( {d^{{(i + 1)}} } \right) - 1}}{{\exp \left( 1 \right) - 1}}, \nonumber \\&K_{t}^{{(i + 1)}} = \frac{{\tau _{{\max }} }}{{\delta _{t}}}\sqrt{2\exp \left( 1 \right) }\nonumber \\&\qquad \qquad \quad \;\times \exp \left[ { - \frac{{\left( {[[u]]_{{t(e)}}^{{(i + 1)}} } \right) ^{2} }}{{\delta _{t}^{2} }}} \right] \nonumber \\&\qquad \qquad \quad \;\times \left( {1 - \frac{{2\left( {[[u]]_{{t(e)}}^{{(i + 1)}} } \right) ^{2} }}{{\delta _{t}^{2} }}} \right) < 0, \nonumber \\&{[}[u]]_{{t(p)}}^{{(i + 1)}} = [[u]]_{{t(p)}}^{i} + \Delta \lambda ^{{(i + 1)}} > 0,\nonumber \\&[[u]]_{{t(e)}}^{{(i + 1)}} = [[u]]_{t}^{{(i + 1)}} - {[[u]]}_{{t(p)}}^{{(i + 1)}} > 0, \nonumber \\&{[}[u]]_{{n(p)}}^{{(i + 1)}} = [[u]]_{{n(p)}}^{{(i)}} + \beta _{s} \Delta \lambda ^{{(i + 1)}} > 0,\nonumber \\&{ [[u]]}_{{n(e)}}^{{(i + 1)}} = [[u]]_{n}^{{(i + 1)}} - [[u]]_{{n(p)}}^{{(i + 1)}} <0,\nonumber \\&d^{{(i + 1)}} = \frac{{[[u]]_{{t(e)}}^{c} }}{{[[u]]_{{t(e)}}^{c} - [[u]]_{{t(e)}}^{0} }}\left( {1 - \frac{{[[u]]_{{t(e)}}^{0} }}{{[[u]]_{{t(e)}}^{{(i + 1)}} }}} \right) \nonumber \\ \end{aligned}$$
    (13)

    where \(\Delta \left( \cdot \right) \) denotes the increment. It is shown the return mapping algorithm ensures that the frictional slip criterion meets the Kuhn–Tucker load conditions \(\dot{\lambda }>0\) and \(F=0\).

Remarks

Bathe and Chaudhary (1985), Simo et al. (1986), Perić and Owen (1992) and Weyler et al. (2012) proposed the penalty based frictional contact algorithms. In their work, the tangential displacement jump is divided into the elastic and plastic parts, and the positive normal and tangential penalty stiffnesses are used in the return mapping algorithm. However, these algorithms are not suitable for the cohesive/friction coupled problem because of tangential cohesive softening behavior. During numerical iterations in Eq. (13), the tangential elastic displacement jump \([[u]]_{t(e)}\) increases and the tangential traction \(T_t\) decreases, but the normal elastic displacement jump \(\left| {\left( {[[u]]_{n(e)}^{(i+1)} } \right) } \right| \) increases and the normal traction \(\left| {T_n } \right| \) increases, which guarantees the convergence of the proposed algorithm at \(\left| F \right| <tol(tol\) is the tolerance). In addition, it is noted the introduction of \(\mu \left| {T_n } \right| \) helps to accelerate the convergence of the proposed algorithm in Eq. (13) because \(\left| {d_t^{(i+1)} } \right| \) decreases and \(\Delta \lambda \) increases and \(\left| {T_n } \right| ^{(i+1)} \) increases. Finally, the normal traction \(T_n=T_n \left( {[[u]]_{n(e)}} \right) \), the tangential traction \(T_t=\mu _s \left| {T_n} \right| \) and the tangential stiffness \(K_t=K_t\left( {[[u]]_{t(e)}} \right) \) are updated after convergence.

Appendix 2: 3D finite element formulation for cohesive models

The node displacement \(\varvec{d}_{\mathrm{N}} \) in the global coordinate system \(\left( {1,2,3} \right) \) is written as

$$\begin{aligned} \varvec{d}_{\mathrm{N}} =(d_x^1 ,d_y^1 ,d_z^1 ,d_x^2 ,d_y^2 ,d_z^2 \cdots d_x^8 ,d_y^8 ,d_z^8 ) \end{aligned}$$
(14)

The relative displacement between top and bottom surfaces is given by

$$\begin{aligned} \Delta \varvec{u}_{\mathrm{N}} ={\varvec{\phi }} \varvec{d}_{\mathrm{N}} = \left( {{\begin{array}{cc} {-\varvec{I}_{12\times 12} }&{} {\varvec{I}_{12\times 12} } \\ \end{array} }} \right) \varvec{d}_{\mathrm{N}} \end{aligned}$$
(15)

where \(\varvec{I}\) is the identity matrix and \({\varvec{\phi }} \) is a \(12\times 24\) matrix.

The displacement at any point within the cohesive element in the global coordinate system \(\left( {1,2,3} \right) \) is calculated as

$$\begin{aligned} \Delta \varvec{u}\left( {\xi ,\eta } \right)= & {} \left( {{\begin{array}{l} {\Delta u_x \left( {\xi ,\eta } \right) } \\ {\Delta u_y \left( {\xi ,\eta } \right) } \\ {\Delta u_z \left( {\xi ,\eta } \right) } \\ \end{array} }} \right) \nonumber \\= & {} \varvec{H}\left( {\xi ,\eta } \right) \Delta \varvec{u}_{\mathrm{N}} =\varvec{H}\left( {\xi ,\eta } \right) \phi \varvec{d}_{\mathrm{N}} ={\varvec{Bd}}_{\mathrm{N}}\nonumber \\ \end{aligned}$$
(16)

where \(\varvec{H}\left( {\xi ,\eta } \right) \) is the \(3\times 12\) shape function and \(\varvec{B}\) is the strain matrix.

The coordinate \(\varvec{x}_R^N \) at any reference surface in the deformed configuration is interpolated as

$$\begin{aligned} \varvec{x}_R^N =\frac{1}{2}\left( {{\begin{array}{cc} {\varvec{I}_{12\times 12} }&{} {\varvec{I}_{12\times 12} } \\ \end{array} }} \right) (\varvec{x}_N +\varvec{d}_{N} ) \end{aligned}$$
(17)

where \(\varvec{x}_N \) is the initial node coordinate in the cohesive element.

The displacement jump \([[\varvec{u}]]\) at any point in the cohesive element in the local coordinate system \(\left( {\xi , \eta ,\zeta } \right) \) is written as

$$\begin{aligned} {[[\varvec{u}]]={\varvec{\Theta }} ^{T}{\varvec{\Delta }} {\varvec{u}}(\xi ,\eta ),}\quad {{\varvec{\Theta }} =({\varvec{n}},{\varvec{t}}_1 ,{\varvec{t}}_2 )} \end{aligned}$$
(18)

where \({\varvec{\Theta }}\) is the transformation matrix where three components are given by

$$\begin{aligned} {{\varvec{n}}=\frac{\left( {\frac{\partial {\varvec{x}}^{R}}{\partial \xi }\times \frac{\partial {\varvec{x}}^{R}}{\partial \eta }} \right) }{\left\| {\frac{\partial {\varvec{x}}^{R}}{\partial \xi }\times \frac{\partial {\varvec{x}}^{R}}{\partial \eta }} \right\| },} \quad {{\varvec{t}}_1 =\frac{\frac{\partial {\varvec{x}}^{R}}{\partial \xi }}{\left\| {\frac{\partial {\varvec{x}}^{R}}{\partial \xi }} \right\| },} \quad {{\varvec{t}}_2 ={\varvec{n}}\times {\varvec{t}}_1 } \end{aligned}$$
(19)

where \({\varvec{x}}^{R}={\varvec{H}}\left( {\xi ,\eta } \right) {\varvec{x}}_R^N \) is a point on the reference surface. \({\varvec{n}}\) is the normal direction and \({\varvec{t}}_1\) and \({\varvec{t}}_2\) are the tangential directions.

Finally, the node residual force vector \({\varvec{f}}_{24\times 1}\) and the stiffness tensor \({\varvec{K}}_{24\times 24} \) of 3D cohesive elements are defined by

$$\begin{aligned} {\varvec{f}}_{24\times 1}= & {} \int _{-1}^1 {\int _{-1}^1 {{\varvec{B}}^{T}{\varvec{\Theta }} ^{T}{\varvec{T}}} } \det J\hbox {d}\xi \hbox {d}\eta \end{aligned}$$
(20)
$$\begin{aligned} {\varvec{K}}_{24\times 24}= & {} \frac{\partial {\varvec{f}}}{\partial {\varvec{d}}_N }=\int _{-1}^1 {\int _{-1}^1 {{\varvec{B}}^{T}{\varvec{\Theta }} ^{T}{\varvec{D}}^s } } {\varvec{\Theta }} {\varvec{B}} \hbox {d}\xi \hbox {d}\eta \nonumber \\ {\varvec{D}}^s= & {} \left[ {{\begin{array}{cc} {K_n}&{} \\ &{} {K_t} \\ \end{array} }} \right] \end{aligned}$$
(21)

Appendix 3: Mode-II shear delamination fracture toughness of composites

Four methods for calculating the mode-II ERR are: 1 Compliance theory (Broek 1984), 2 Beam theory (Russell and Street 1982), 3 Modified beam theory (Carlsson et al. 1986) and 4 Associative beam theory and first-order shear deformation theory (Ozdil et al. 1998). The mode-II delamination fracture toughness \(G_{\mathrm{II}}^c \) is determined using the initial delamination crack length \(a=a_0 \) and the corresponding experimental load value P(Theotokoglou and Vrettos 2006).

1.1 Compliance theory (Broek 1984)

Load-line compliance \(C=\varDelta /P\) is defined, where \(\varDelta \) is the displacement at the central loading point and P is the applied load. The ERR \(G_{{\mathrm{II}}} \) takes the form

$$\begin{aligned} G_{\mathrm{II}} =\frac{P^{2}}{2b}\frac{\partial C}{\partial a} \end{aligned}$$
(22)

where a is the actual crack length and b is the width of the specimen.

1.2 Beam theory (Russell and Street 1982)

The load-line compliance \(C_{\mathrm{BT}} \) and the mode-II ERR \(G_{\mathrm{II}}^{{BT}} \) are given by the beam theory

$$\begin{aligned} C_{\mathrm{BT}} =\frac{2L^{3}+3a^{3}}{8E_1 bh^{3}} \end{aligned}$$
(23)
$$\begin{aligned} G_{\mathrm{II}}^{BT} =\frac{9a^{2}P^{2}}{16E_1 b^{2}h^{3}} \end{aligned}$$
(24)

where \(E_1 \) is the longitudinal elastic modulus.

1.3 Modified beam theory (Carlsson et al. 1986)

Equations (25) and (26) were modified to include the effect of transverse shear deformation

$$\begin{aligned} C_{\mathrm{SH}}= & {} C_{\mathrm{BT}} +\frac{1.2L+0.9a}{4bG_{13} h} \end{aligned}$$
(25)
$$\begin{aligned} G_{\mathrm{II}}^{\mathrm{SH}}= & {} G_{\mathrm{II}}^{\mathrm{BT}} \left[ {1+0.2\left( {\frac{E_1 }{G_{13} }} \right) \left( {\frac{h}{a}} \right) ^{2}} \right] \end{aligned}$$
(26)

where \(G_{13} \) is the shear modulus.

1.4 Associated beam theory and first-order shear deformation theory (Ozdil et al. 1998)

By combining the laminate beam theory and the first order shear deformation theory, the compliance and the mode-II ERR are given by

$$\begin{aligned} C_{\mathrm{SBT}}= & {} \frac{L^{3}(d_{11} )_{\mathrm{BC}} }{6b}+\frac{L(a_{55} )_{\mathrm{BC}} }{2bk}+\frac{a^{3}\left[ {(d_{11} )_{\mathrm{AB}} -(d_{11} )_{\mathrm{BC}} } \right] }{12b}\nonumber \\&+\,\frac{a\left[ {(a_{55} )_{\mathrm{AB}} -(a_{55} )_{\mathrm{BC}} } \right] }{4bk} \end{aligned}$$
(27)
$$\begin{aligned} G_{\mathrm{II}}^{\mathrm{SBT}}= & {} \frac{P^{2}}{8b^{2}}\left\{ {a^{2}\left[ {(d_{11} )_{\mathrm{AB}} -(d_{11} )_{\mathrm{BC}} } \right] +\frac{(a_{55} )_{\mathrm{AB}} -(a_{55} )_{\mathrm{BC}} }{k}} \right\} \nonumber \\ \end{aligned}$$
(28)

where \(k=5/6\) is the shear correction factor, AB is the delaminated section, BC is a part of the intact section of the ENF specimen in Fig. 6, and (\(d_{11})_{\mathrm{AB}}\), (\(d_{11})_{\mathrm{BC}}\), (\(a_{55})_{\mathrm{AB}}\) and (\(a_{55})_{\mathrm{BC}}\) are the effective bending and shear compliances, respectively.

To calculate \(C_{\mathrm{SBT}} \) and \(G_{\mathrm{II}}^{\mathrm{SBT}} \) for the ENF specimen, the effective bending and shear compliances are calculated according to the method proposed by Ozdil et al. (1998).

Appendix 4: Analytical formulas for the load–displacement curves for mode-II delamination of ENF composites

According to the analytical formulas derived by Mi et al. (1998), the load–displacement curve of the ENF composite specimen is divided into three parts:

$$\begin{aligned}&\hbox {Curve}-\overline{{\mathrm{O}}}\overline{{\mathrm{B}}}: \quad \varDelta =\frac{P(2L^{3}+3a_0^3)}{96E_1 I} \end{aligned}$$
(29)
$$\begin{aligned}&\hbox {Curve}-\overline{{\mathrm{A}}}\overline{{\hbox {B}}}\overline{{C}}(a<L): \nonumber \\&\quad \varDelta =\frac{P}{96E_1 I}\left[ {2L^{3}+\frac{\left( {64G_{\mathrm{II}}^c bE_1 I} \right) ^{3/2}}{\sqrt{3}P^{3}}} \right] \end{aligned}$$
(30)
$$\begin{aligned}&\hbox {Curve}-\overline{{\mathrm{D}}}\overline{{\mathrm{E}}}(a>L): \nonumber \\&\quad \varDelta =\frac{P}{24E_1 I}\left[ {2L^{3}-\frac{\left( {64G_{\mathrm{II}}^c bE_1 I} \right) ^{3/2}}{4\sqrt{3}P^{3}}} \right] \end{aligned}$$
(31)

where I is the second-order inertia moment and \(a_0\) is the initial crack length.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P.F., Gu, Z.P. & Peng, X.Q. A nonlinear cohesive/friction coupled model for shear induced delamination of adhesive composite joint. Int J Fract 199, 135–156 (2016). https://doi.org/10.1007/s10704-016-0100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0100-3

Keywords

Navigation