Skip to main content
Log in

A linear elastic-brittle interface model: application for the onset and propagation of a fibre-matrix interface crack under biaxial transverse loads

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A new linear elastic and perfectly brittle interface model for mixed mode is presented and analysed. In this model, the interface is represented by a continuous distribution of springs which simulates the presence of a thin elastic layer. The constitutive law for the continuous distribution of normal and tangential initially-linear-elastic springs takes into account possible frictionless elastic contact between adherents once a portion of the interface is broken. A perfectly brittle failure criterion is employed for the springs, which enables the study of crack onset and propagation. This interface failure criterion takes into account the variation of the interface fracture toughness with the fracture mode mixity. A unified way to represent several phenomenological both energy and stress based failure criteria is introduced. A proof relating the energy release rate and tractions at an interface point (not necessarily a crack tip point) is introduced for this interface model by adapting Irwin’s crack closure technique for the first time. The main advantages of the present interface model are its simplicity, robustness and computational efficiency, even in the presence of snap-back and snap-through instabilities, when the so-called sequentially linear (elastic) analysis is applied. This model is applied here in order to study crack onset and propagation at the fibre-matrix interface in a composite under tensile/compressive remote biaxial transverse loads. Firstly, this model is used to obtain analytical predictions about interface crack onset, while investigating a single fibre embedded in a matrix which is subjected to uniform remote transverse loads. Then, numerical results provided by a 2D boundary element analysis show that a fibre-matrix interface failure is initiated by the onset of a finite debond in the neighbourhood of the interface point where the failure criterion is first reached (under increasing proportional load); this debond further propagates along the interface in mixed mode or even, in some configurations, with the crack tip under compression. The analytical predictions of the debond onset position and associated critical load are used for several parametric studies of the influence of load biaxiality, fracture-mode sensitivity and brittleness number, and for checking the computational procedure implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. It is easy to see that \(\chi \) gives the position of the center of the normalized Mohr circumference and its characteristic values are \(\chi =1\) (equibiaxial tension), \(\chi =0.5\) (uniaxial tension), \(\chi =0\) (equibiaxial tension-compression or pure shear stress), \(\chi =-0.5\) (uniaxial compression) and \(\chi =-1\) (equibiaxial compression). It is useful to realize that \(\phi ^\infty =\frac{\pi }{2}\left( \chi -\frac{1}{2}\right) \).

  2. There are several misprints in Eqs. (27)–(31) in Távara et al. (2011) corrected herein.

References

  • Adams RD, Comyn J, Wake WC (1984) Structural adhesive joints in engineering. Chapman and Hall, London

    Book  Google Scholar 

  • Antipov YA, Avila-Pozos O, Kolaczkowski ST, Movchan AB (2001) Mathematical model of delamination cracks on imperfect interfaces. Int J Solids Struct 38:6665–6697

    Article  Google Scholar 

  • Bank-Sills L, Ashkenazi D (2000) A note on fracture criteria for interface fracture. Int J Fract 103:177–188

    Article  Google Scholar 

  • Bank-Sills L, Salganik R (1994) An asymptotic approach applied to a longitudinal crack in an adhesive layer. Int J Fract 68:55–73

    Article  Google Scholar 

  • Bažant Z, Cedolin L (1991) Stability of structures elastic, inelastic, fracture and damage theories. Oxford University Press, New York

    Google Scholar 

  • Bennati S, Colleluori M, Corigliano D, Valvo PS (2009) An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates. Compos Sci Technol 69:1735–1745

    Article  Google Scholar 

  • Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33:309–323

    Article  Google Scholar 

  • Benzeggagh M, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed mode bending apparatus. Compos Sci Technol 49:439–49

    Article  Google Scholar 

  • Bialas M, Mróz Z (2005a) Damage modelling at material interfaces. In: Sadowski T (ed) Multiscale modelling of damage and fracture processes in composite materials. Springer, Wien, pp 213–270

    Chapter  Google Scholar 

  • Bialas M, Mróz Z (2005b) Modelling of progressive interface failure under combined normal compression and shear stress. Int J Solids Struct 42:4436–4467

    Article  Google Scholar 

  • Bigoni D, Serkov SK, Valentini M, Movchan AB (1998) Asymptotic models of dilute composites with imperfectly bonded inclusions. Int J Solids Struct 35:3239–3258

    Article  Google Scholar 

  • Blázquez A, Mantič V, París F, Cañas J (1996) On the removal of rigid body motions in the solution of elastostatic problems by direct BEM. Int J Numer Methods Eng 39:4021–4038

    Article  Google Scholar 

  • Brewer JC, Lagace A (1988) Quadratic stress criterion for initiation of delamination. J Compos Mater 1141(22):1141–1155

    Article  Google Scholar 

  • Bruno D, Greco F (2001) Mixed mode delamination in plates: a refined approach. Int J Solids Struct 38:9149–9177

    Article  Google Scholar 

  • Bruno D, Greco F, Lonetti P (2003) A coupled interface-multilayer approach for mixed mode delamination and contact analysis in laminated composites. Int J Solids Struct 40:7245–7268

    Article  Google Scholar 

  • Camanho PP, Dávila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438

    Article  Google Scholar 

  • Caporale A, Luciano R, Sacco E (2006) Micromechanical analysis of interfacial debonding in unidirectional fiber-reinforced composites. Comput Struct 84:2200–2211

    Article  Google Scholar 

  • Carpinteri A (1989) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solids 37:567–582

    Article  Google Scholar 

  • Carpinteri A, Paggi M, Zavarise G (2005) Snap-back instability in micro-structured composites and its connection with superplasticity. Strength, Fract Complex 3:61–72

    Google Scholar 

  • Carpinteri A, Cornetti P, Pugno N (2009) Edge debonding in FRP strengthened beams: Stress versus energy failure criteria. Eng Struct 31:2436–2447

    Article  Google Scholar 

  • Cornetti P, Mantič V, Carpinteri A (2012) Finite fracture mechanics at elastic interfaces. Int J Solids Struct 49:1022–1032

    Article  Google Scholar 

  • Cornetti P, Corrado M, de Lorenzis L, Carpinteri A (2015) An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams. Int J Solids Struct 53:92–106

    Article  Google Scholar 

  • Correa E, Gamstedt EK, París F, Mantič V (2007) Effects of the presence of compression in transverse cyclic loading on fibre-matrix debonding in unidirectional composite plies. Compos Part A Appl Sci Manuf 38:2260–2269

    Article  Google Scholar 

  • Correa E, Mantič V, París F (2008a) A micromechanical view of inter-fibre failure of composite materials under compression transverse to the fibres. Compos Sci Technol 68:2010–2021

    Article  Google Scholar 

  • Correa E, Mantič V, París F (2008b) Numerical characterisation of the fibre-matrix interface crack growth in composites under transverse compression. Eng Fract Mech 75:4085–4103

    Article  Google Scholar 

  • Correa E, París F, Mantič V (2013) Effect of the presence of a secondary transverse load on the inter-fibre failure under tension. Eng Fract Mech 103:174–189

  • Ducept F, Gamby D, Davies P (1999) A mixed-mode failure criterion derived from tests on symmetric and asymmetric specimens. Compos Sci Technol 59:609–619

    Article  Google Scholar 

  • Entov VM, Salganik RL (1968) On the Prandtl brittle fracture model. Mech Solids 3(6):79–89 (translated from Russian)

    Google Scholar 

  • Erdogan F (1997) Fracture mechanics of interfaces. In: Rossmanith HP (ed) Damage and failure of Interfaces. A A Balkema Publishers, Rotterdam, pp 3–36

    Google Scholar 

  • Evans AG, Rühle M, Dalgleish BJ, Charalambides PG (1990) The fracture energy of bimaterial interfaces. Metall Trans A 21:2419–2429

    Article  Google Scholar 

  • Fernlund G, Spelt JK (1991) Analytical method for calculating adhesive joint fracture parameters. Eng Fract Mech 40:119–132

    Article  Google Scholar 

  • Fiedler B, Hojo M, Ochiai S, Schulte K, Ando M (2001) Failure behavior of an epoxy matrix under different kinds of static loading. Compos Sci Technol 61:1615–1624

    Article  Google Scholar 

  • Gao Z (1995) A circular inclusion with imperfect interface: Eshelby’s tensor and related problems. J Appl Mech 62:860–866

    Article  Google Scholar 

  • García IG, Leguillon D (2012) Mixed-mode crack initiation at a v-notch in presence of an adhesive joint. Int J Solids Struct 49(15–16):2138–2149

    Article  Google Scholar 

  • García IG, Paggi M, Mantič V (2014) Fiber-size effects on the onset of fiber-matrix debonding under transverse tension: A comparison between cohesive zone and finite fracture mechanics models. Eng Fract Mech 115:96–110

    Article  Google Scholar 

  • García IG, Mantič V, Graciani E (2015) A model for the prediction of debond onset in spherical-particle-reinforced composites under tension. Application of a coupled stress and energy criterion. Compos Sci Technol 106:60–67

    Article  Google Scholar 

  • Geymonat G, Krasucki F, Lenci S (1999) Mathematical analysis of a bonded joint with a soft thin adhesive. Math Mech Solids 4:201–225

    Article  Google Scholar 

  • Goland M, Reissner E (1944) The stresses in cemented joints. J Appl Mech 11:A17–A27

    Google Scholar 

  • Goutianos S, Sørensen BF (2012) Path dependence of truss-like mixed mode cohesive laws. Eng Fract Mech 91:117–132

    Article  Google Scholar 

  • Graciani E, Mantič V, París F, Blázquez A (2005) Weak formulation of axi-symmetric frictionless contact problems with boundary elements: application to interface cracks. Comput Struct 83:836–855

    Article  Google Scholar 

  • Han R, Ingber MS, Schreyer HL (2006) Progression of failure in fiber-reinforced materials. Comput Mater Contin 4:163–176

    Google Scholar 

  • Harper PW, Sun L, Hallett SR (2012) A study on the influence of cohesive zone interface element strength parameters on mixed mode behaviour. Compos Part A 43:722–734

    Article  Google Scholar 

  • Hashin Z (2002) Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J Mech Phys Solids 50:2509–2537

    Article  Google Scholar 

  • Hull D, Clyne TW (1996) An introduction to composite materials, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hutchinson JW, Suo Z (1992) Mixed mode cracking in layered materials. Adv Appl Mech 29:63–191

    Article  Google Scholar 

  • Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives. Science and technology. Chapman and Hall, London

    Book  Google Scholar 

  • Krenk S (1992) Energy release rate of symmetric adhesive joints. Eng Fract Mech 43(4):549–559

    Article  Google Scholar 

  • Kushch VI, Shmegera SV, Brøndsted P, Mishnaevsky L (2011) Numerical simulation of progressive debonding in fiber reinforced composite under transverse loading. Int J Eng Sci 49:17–29

    Article  Google Scholar 

  • Kšiñan J, Mantič V, Vodička R (2014) A new interface damage model with frictional contact. an SGBEM formulation and implementation. In: Mallardo V, Aliabadi MH (eds) Advances in boundary element techniques & meshless techniques XV. EC Ltd, Eastleight, pp 60–67

    Google Scholar 

  • Leguillon D (2002) Strength or toughness? a criterion for crack onset at a notch. Eur J Mech A Solids 21:61–72

    Article  Google Scholar 

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, Berlin

    Google Scholar 

  • Lenci S (2001) Analysis of a crack at a weak interface. Int J Fract 108:275–290

    Article  Google Scholar 

  • Liechti KM (2002) Fracture mechanics and singularities in bonded systems. In: Dillard DA, Pocius AV (eds) The mechanics of adhesion. Elsevier, Amsterdam, pp 45–75

    Google Scholar 

  • Mantič V (2009) Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion. Int J Solids Struct 46:1287–1304

    Article  Google Scholar 

  • Mantič V, García IG (2012) Crack onset and growth at the fibre-matrix interface under remote biaxial transverse loads. Application of a coupled stress and energy criterion. Int J Solids Struct 49:2273–2290

    Article  Google Scholar 

  • Mantič V, Blázquez A, Correa E, París F (2006) Analysis of interface cracks with contact in composites by 2D BEM. In: Guagliano M, Aliabadi MH (eds) Fracture and damage of composites. WIT Press, Southampton, pp 189–248

    Google Scholar 

  • Mishuris GS, Kuhn G (2001) Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface. Z Angew Math Mech 81:811–826

    Article  Google Scholar 

  • Mogilevskaya SG, Crouch SL (2002) A Galerkin boundary integral method for multiple circular elastic inclusions with homogeneously imperfect interfaces. Int J Solids Struct 39:4723–4746

    Article  Google Scholar 

  • Mott NF (1948) Fracture of metals: theoretical considerations. Engineering 165:16–18

    Google Scholar 

  • Muñoz-Reja M, Távara L, Mantič V, Cornetti P (2014) Crack onset and propagation in composite materials using finite fracture mechanics on elastic interfaces. Proced Mater Sci 3:1365–1370

    Article  Google Scholar 

  • Muñoz-Reja M, Távara L, Mantič V, Cornetti P (2015) Crack onset and propagation at fibre-matrix elastic interfaces under biaxial loading using finite fracture mechanics. Compos Part A Appl Sci Manuf. doi:10.1016/j.compositesa.2015.09.023

  • Ngo D, Park K, Paulino GH, Huang Y (2010) On the constitutive relation of materials with microstructure using a potential-based cohesive model for interface interaction. Eng Fract Mech 77:1153–1174

    Article  Google Scholar 

  • Panagiotopoulos C, Mantič V, Roubíček T (2013) BEM implementation of energetic solutions for quasistatic delamination problems. Comput Mech 51:505–521

    Article  Google Scholar 

  • París F, Correa E, Cañas J (2003) Micromechanical view of failure of the matrix in fibrous composite materials. Compos Sci Technol 63:1041–1052

    Article  Google Scholar 

  • París F, Correa E, Mantič V (2007) Kinking of transverse interface cracks between fiber and matrix. J Appl Mech 74:703–716

    Article  Google Scholar 

  • Pinho ST, Ianucci L, Robinson P (2006) Formulation and implementation of decohesion elements in an explicit finite element code. Compos Part A 37:778–789

    Article  Google Scholar 

  • Prandtl L (1933) Ein Gedankenmodell für den Zerreißvorgang spröder Körper (A thought model for the fracture of brittle solids). Z Angenw Math Mech 13(2):129–133

    Article  Google Scholar 

  • Raous M (2011) Interface models coupling adhesion and friction. C R Mec 339:491–501

    Article  Google Scholar 

  • Roubíček T, Mantič V, Panagiotopoulos C (2013) Quasistatic mixed-mode delamination model. Discrete Contin Dyn Syst Ser S 6:591–610

    Google Scholar 

  • Shahin K, Taheri F (2008) The strain energy release rates in adhesively bonded balanced and unbalanced specimens and lap joints. Int J Solids Struct 45:6284–6300

    Article  Google Scholar 

  • Soden PD, Hinton MJ, Kaddour AS (1998) Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos Sci Technol 58:1011–1022

    Article  Google Scholar 

  • Swadener JG, Liechti KM, de Lozanne AL (1999) The intrinsic toughness and adhesion mechanisms of a glass/epoxy interface. J Mech Phy Solids 47:223–258

    Article  Google Scholar 

  • Távara L (2010) Damage initiation and propagation in composite materials. Boundary element analysis using weak interface and cohesive zone models. Ph.D. Thesis, Universidad de Sevilla, Sevilla

  • Távara L, Mantič V, Graciani E, Cañas J, París F (2010) Analysis of a crack in a thin adhesive layer between orthotropic materials. An application to composite interlaminar fracture toughness test. Comput Model Eng Sci 58(3):247–270

    Google Scholar 

  • Távara L, Mantič V, Graciani E, París F (2011) BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model. Eng Anal Bound Elem 35:207–222

  • Távara L, Mantič V, Graciani E, París F (2013) BEM modelling of interface cracks in a group of fibres under biaxial transverse loads. In: Sellier A, Aliabadi MH (eds) Advances in boundary element & meshless techniques XIV. EC Ltd, Eastleight, UK, pp 311–316

  • Távara L, Mantič V, Graciani E, París F (2015) Modelling interfacial debonds in unidirectional fibre reinforced composites under biaxial transverse loads. Compos Struct. doi:10.1016/j.compstruct.2015.09.034

  • Thouless MD, Yang QD (2002) Measurement and analysis of the fracture properties of adhesive joints. In: Dillard DA, Pocius AV (eds) The mechanics of adhesion. Elsevier, Amsterdam, pp 235–271

    Google Scholar 

  • Tvergaard V (2001) Resistance curves for mixed mode interface crack growth between dissimilar elasti-plastic solids. J Mech Phys Solids 49:2689–2703

    Article  Google Scholar 

  • Valoroso N, Champaney L (2006) A damage-mechanics-based approach for modelling decohesion in adhesively bonded assemblies. Eng Fract Mech 73:2774–2801

    Article  Google Scholar 

  • Varna J, Berglund LA, Ericson ML (1997) Transverse single fiber test for interfacial debonding in composites 2: modelling. Compos Part A Appl Sci Manuf 28:317–326

    Article  Google Scholar 

  • Vodička R, Mantič V, Roubíček T (2014) Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model. Meccanica 49:2933–2963

    Article  Google Scholar 

  • Wang JS, Suo Z (1990) Experimental determination of interfacial toughness curves using Brazil-nut sandwiches. Acta Metall Mater 38:1279–1290

    Article  Google Scholar 

  • Wang JT (2013) Investigating some technical issues on cohesive zone modeling of fracture. J Eng Mater Technol 135:011003

    Article  Google Scholar 

  • Weißgraeber P, Becker W (2013) Finite fracture mechanics model for mixed mode fracture in adhesive joints. Int J Solids Struct 50:2383–2394

    Article  Google Scholar 

  • Xie M, Levy A (2007) Defect propagation at a circular interface. Int J Fract 144:1–20

    Article  Google Scholar 

  • Zhang H, Ericson ML, Varna J, Berglund LA (1997) Transverse single-fiber test for interfacial debonding in composites: 1. Experimental observations. Compos Part A Appl Sci Manuf 28A:309–315

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Junta de Andalucía and European Social Fund (Projects of Excellence TEP-2045, TEP-4051 and P12-TEP-1050), The Spanish Ministry of Education and Science (Projects TRA2006-08077 and MAT2009-14022) and Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (Projects MAT2012-37387 and DPI2012-37187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Távara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantič, V., Távara, L., Blázquez, A. et al. A linear elastic-brittle interface model: application for the onset and propagation of a fibre-matrix interface crack under biaxial transverse loads. Int J Fract 195, 15–38 (2015). https://doi.org/10.1007/s10704-015-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0043-0

Keywords

Navigation