Skip to main content
Log in

Fracture behavior of thin-walled Zircaloy fuel clad tubes of Indian pressurized heavy water reactor

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

For structural integrity analysis of thin walled tubular components such as fuel claddings used in nuclear reactors, knowledge of valid fracture mechanics parameters are required. As axially-cracked thin tubes possess a non-standard geometry from the point of view of specimen fabrication, there is no direct straight forward way to derive their fracture mechanics parameters with known functions as can be done for standard test methods. In the present work, the J–R curve for an axially cracked fuel pin from Indian 220 MWe pressurized heavy water reactor is derived after experimental and analytical derivation of the required parameters and the results are compared with earlier published data for similar material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Crack length

\({{a}_0^\prime}\) :

Crack length at the start of the test

\({a_{bi}^{\prime}}\) :

Blunting corrected crack size at the ith data point of the load-normalization method

b 0 :

Initial unbroken ligament length of the PLT specimen

A :

Cracked area of the PLT specimen fracture surface

A uc :

Area of the remaining ligament or un-cracked area

A el :

Elastic part of area under the load-displacement curve

A pl :

Plastic part of area under the load-displacement curve

C :

Compliance of the PLT specimens

E :

Young’s modulus

f(a/W):

Geometric shape function for evaluation of stress intensity factor as a function of a/W for a finite PLT specimen

F L :

Limit load of the PLT specimens

J :

J-integral

J 0.2 :

J-integral corresponding to 0.2 mm crack growth

J el :

Elastic part of J-integral

J pl :

Plastic part of J-integral

K I :

Mode-I stress intensity factor

P i :

Load at step ‘i’ of the load-normalization process

P Ni :

Normalized load at step ‘i

t :

Thickness of the PLT specimens

v i :

Total displacement at step ‘i

v pli :

Plastic part of displacement at step ‘i

\({{v}^{\prime}_{Ni}}\) :

Normalized plastic part of displacement at step ‘i

W :

Width of the PLT test set up = 19 mm

η, γ :

Geometric factors used in evaluation of the plastic part of the J-integral and crack growth correction respectively

ν :

Poisson’s ratio

σ Y :

Flow stress of the material

References

  • Arsène S, Bai J, Bompard P (2003) Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) Zircaloy cladding tubes: part III. Mechanical behavior of hydride in stress-relieved annealed and recrystallized Zircaloys at 20°C and 300°C. Metall Mater Trans 34A: 579–588

    Article  Google Scholar 

  • ASTM Standard E 1820-01 (2000) Standard test method for measurement of fracture toughness. ASTM, Philadelphia, PA, 03.01:1–21

  • Bertolino G, Meyer G, Ipiña JP (2002) Degradation of the mechanical properties of Zircaloy-4 due to hydrogen embrittlement. J Alloys Comp 330–332: 408–413

    Article  Google Scholar 

  • Bertolino G, Meyer G, Perez IJ (2003) Effects of hydrogen content and temperature on fracture toughness of Zircaloy-4. J Nucl Mater 320: 272–279

    Article  CAS  Google Scholar 

  • Bertolino G, Meyer G, Perez IJ (2003) In situ crack growth observation and fracture toughness measurement of hydrogen charged zircaloy-4. J Nucl Mater 322: 57–65

    Article  CAS  Google Scholar 

  • Bertsch J, Hoffelner W (2006) Crack resistance curve determination of tube cladding material. J Nucl Mater 352: 116–125

    Article  CAS  Google Scholar 

  • Chung H, Kassner T (1998) Cladding metallurgy and fracture behavior during reactivity-initiated accidents at high burnup. Nucl Eng Des 186: 411–427

    Article  CAS  Google Scholar 

  • Duggan TV, Proctor MW, Spence LJ (1979) Stress intensity calibrations and compliance functions for fracture toughness and crack propagation test specimens. Int J Fatigue 1(1): 37–47

    Article  Google Scholar 

  • Dzugan J, Viehrig HW (2004) Application of the normalization method for the determination of J–R curves. Mater Sci Eng A387–389: 307–311

    Google Scholar 

  • Grigoriev V, Josefsson B, Lind A, Rosborg B (1995) A pin-loading tension test for evaluation of thin-walled tubular materials. Scr Metall Mater 33(1): 109–114

    Article  CAS  Google Scholar 

  • Grigoriev V, Jakobsson R (2005) Delayed hydrogen cracking velocity and J-integral measurements on irradiated BWR cladding. J ASTM Int 2(8): 1–16

    Article  Google Scholar 

  • Grigoriev V, Josefsson B, Rosborg B (1996) Fracture toughness of zircaloy cladding tubes. Zirconium in nuclear industry. In: Bradely ER, Sabol GP (eds) Proceedings of 11th international symposium. ASTM STP 1295, pp 431–447

  • Herrera R, Landes JD (1988) A direct J–R curve analysis of fracture toughness tests. J Test Eval 16(5): 427–449

    Article  Google Scholar 

  • Hoagland RG, Rowe RG (1969) Fracture of irradiated Zircaloy-2. J Nucl Mater 30: 179–195

    Article  CAS  Google Scholar 

  • Landes JD, Herrera R (1988) A new look at J–R curve analysis. Int J Fract 36: 9–14

    Google Scholar 

  • Landes JD, Zhou Z, Lee K, Herrera R (1991) Normalization method for developing J–R curves with the LMN function. J Test Eval 19(4): 305–311

    Article  CAS  Google Scholar 

  • Leclercq S, Parrot A, Leroy M (2008) Failure characteristics of cladding tubes under RIA conditions. Nucl Eng Des 238(9): 2206–2218

    Article  CAS  Google Scholar 

  • Lee KW, Kim SK, Kim KT, Hong SI (2001) Ductility and strain rate sensitivity of Zircaloy-4 nuclear fuel claddings. J Nucl Mater 295: 21–26

    Article  CAS  Google Scholar 

  • Mani Krishna KV, Sahoo SK, Samajdar I, Neogy S, Tewari R, Srivastava D, Dey GK, Das GH, Saibaba N, Banarjee S (2008) J Nucl Mat 383: 78

    Article  Google Scholar 

  • Meyer RO, McCardell RK, Chung HM, Diamond DJ, Scott HH (1996) A regulatory assessment of test data for reactivity initiated accidents. Nucl Saf 37(4): 271–288

    CAS  Google Scholar 

  • Miura N, Wilkowski GM (1998a) J–R curves from circumferentially through-wall cracked pipe tests subjected to combined bending and tension-part i: theory and numerical simulation. J Press Vessel Technol Trans ASME 120: 406–411

    Article  Google Scholar 

  • Miura N, Wilkowski GM (1998b) J–R curves from circumferentially throughwall cracked pipe tests subjected to combined bending and tension-part ii: experimental and analytical validation. J Press Vessel Technol Trans ASME 120: 412–417

    Article  Google Scholar 

  • Nikulina AV (2003) Zirconium–niobium alloys for core elements of pressurized water reactors. Met Sci Heat Treat 45(7–8): 287–292

    Article  CAS  Google Scholar 

  • Nikulina AV (2004) Zirconium alloys in nuclear power engineering. Met Sci Heat Treat 46(11–12): 458–462

    Article  CAS  Google Scholar 

  • Northwood DO (1985) The development and applications of zirconium alloys. Mater Des 6(2): 58–70

    Article  CAS  Google Scholar 

  • Ryder JT, Browie GE, Pettit DE (1977) Recent considerations in experimental compliance calibration of the WOL specimen. Eng Frac Mech 9: 901–923

    Article  Google Scholar 

  • Samal MK, Sanyal G, Chakravartty JK (2010) An experimental and numerical study of the fracture behaviour of tubular specimens in a pin-loading-tension set-up. J Mech Eng Sci 224(1): 1–12

    Google Scholar 

  • Sanyal G, Samal MK, Chakravartty JK, Ray KK, Suri AK, Banerjee S (2011) Prediction of J–R curves of thin-walled fuel pin specimens in a PLT setup. Eng Fract Mech 78: 1029–1043

    Article  Google Scholar 

  • Saux ML, Besson J, Carassou S, Poussard C, Averty X (2010) Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between 25°C and 480°C under various stress states, including RIA loading conditions. Eng Fail Anal 17: 683–700

    Article  Google Scholar 

  • Seok CS, Bae BK, Koo JM, Murty KL (2006) The properties of the ring and burst creep of ZIRLO cladding. Eng Fail Anal 13: 389–397

    Article  CAS  Google Scholar 

  • Sharobeam MH, Landes JD (1991) The load separation criterion and methodology in ductile fracture mechanics. Int J Fract 47(2): 81–104

    Article  Google Scholar 

  • Sharobeam MH, Landes JD (1993) The load separation and ηpl development in precracked specimen test records. Int J Fract 59(3): 213–226

    Article  CAS  Google Scholar 

  • Timoshenko S, Young DH (1962) Strength of materials. D. Van Nostrand Company Inc., Princeton, NJ

    Google Scholar 

  • Une K, Ishimoto S (2006) EBSP measurements of hydrogenated Zircaloy-2 claddings with stress-relieved and recrystallized annealing conditions. J Nucl Mater 357(1–3): 147–155

    Article  CAS  Google Scholar 

  • Varias AG, Massih AR (2000) Temperature and constraint effects on hydride fracture in zirconium alloys. Eng Frac Mech 65: 29–54

    Article  Google Scholar 

  • Yagnik SK, Ramasubramanian N, Grigoriev V, Sainte-Catherine C, Bertsch J, Adamson R, Kuo R-C, Mahmood ST, Fukuda T, Efsing P, Oberländer BC (2008) Round-Robin testing of fracture toughness characteristics of thin-walled tubing. J ASTM Int 5(2): 1–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sanyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanyal, G., Samal, M.K. Fracture behavior of thin-walled Zircaloy fuel clad tubes of Indian pressurized heavy water reactor. Int J Fract 173, 175–188 (2012). https://doi.org/10.1007/s10704-012-9678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9678-2

Keywords

Navigation