Skip to main content
Log in

Lattice modeling of aggregate interlocking in concrete

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, we study a mixed-mode fracture process using a conventional two dimensional lattice model with incorporated meso-level internal material structure. Simple elasto-brittle elements of the network are divided into three phases according to a projected grain layout. The stiffness of any element that fulfils a failure criterion is removed. As a new feature of the otherwise standard lattice approach, we added the recovery of normal stiffness when a severed element enters the compressive regime. This enhancement enables capture of the shear resistance of an existing crack caused by crack roughness, i.e. what is termed aggregate interlocking. We demonstrate this enhancement via the simulation of mixed-mode experiments on concrete performed at a laboratory at the Technical University of Denmark. Double notched concrete specimens were initially pre-cracked in tension. Then, various combinations of tensile and shear load (normal and tangential to the crack plane) were applied. Simulated crack patterns and load–displacement curves are compared to the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu MM, Lemos JV, Carmeliet J, Schlangen E (2007) Modelling compressive cracking in concrete using a modified lattice model. In: Carpinteri A, Gambarova PG, Ferro G, Plizzari G (eds) Fracture mechanics of concrete and concrete structures—new trends in fracture mechanics of concrete. Taylor & Francis Group, London

    Google Scholar 

  • Asahina D, Landis E, Bolander J (2011) Modeling of phase interfaces during pre-critical crack growth in concrete. Cem ConcrCompos 33(9):966–977 doi:10.1016/j.cemconcomp.2011.01.007

    Article  CAS  Google Scholar 

  • Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM T Math Softw 22(4): 469–483. doi:10.1.1.54.6345

    Article  Google Scholar 

  • Beranek WJ, Hobbelman GJ (1995) 2D and 3D-modelling of concrete as an assemblage of spheres, revaluation of the failure criterion. In: Wittmann FH (ed) Fracture mechanics of concrete structures, Aedificatio Publishers, Freiburg, pp 965–978

  • Bolander JE, Kobashi Y (1995) Size effect mechanisms in numerical concrete fracture. In: Wittmann FH (ed) Fracture mechanics of concrete structures, Aedificatio Publishers, Freiburg, pp 535–542

  • Bolander JE, Saito S (1998) Fracture analyses using spring networks with random geometry. Eng Fract Mech 61(5-6): 569–591. doi:10.1016/S0013-7944(98)00069-1

    Article  Google Scholar 

  • Bolander JE, Hikosaka H, He WJ (1998) Fracture in concrete specimens of different scale. Eng Comput 15(8): 1094–1116. doi:10.1108/02644409810244156

    Article  Google Scholar 

  • Bolander JE, Hong GS, Yoshitake K (2000) Structural concrete analysis using rigid-body-spring networks. Comput-Aided Civ Inf 15: 120–133. doi:10.1111/0885-9507.00177

    Article  Google Scholar 

  • Cusatis G, Cedolin L (2007) Two-scale study of concrete fracturing behavior. Eng Fract Mech 74(1-2): 3–17. doi:10.1016/j.engfracmech.2006.01.021

    Article  Google Scholar 

  • Cusatis G, Bažant ZP, Cedolin L (2006) Confinement-shear lattice CSL model for fracture propagation in concrete. Comput Methods Appl Mech Eng 195(52): 7154–7171. doi:10.1016/j.cma.2005.04.019

    Article  Google Scholar 

  • DeJong MJ, Hendriks MA, Rots JG (2008) Sequentially linear analysis of fracture under non-proportional loading. Eng Fract Mech 75(18): 5042–5056. doi:10.1016/j.engfracmech.2008.07.003

    Article  Google Scholar 

  • Eliáš J, Frantík P, Vořechovský M (2010) Improved sequentially linear solution procedure. Eng Fract Mech 77(12): 2263–2276. doi:10.1016/j.engfracmech.2010.05.018

    Article  Google Scholar 

  • Eliáš J, Vořechovský M (2012) The effect of mesh density in lattice models for concrete with incorporated mesostructure. Key Eng Mat 488-489(12): 29–32. doi:10.4028/www.scientific.net/KEM.488-489.29

    Google Scholar 

  • Hassanzadeh M (1991) Behavior of fracture process zones in concrete influenced by simultaneously applied normal and shear displacements. Ph.D. thesis, Division of Building Materials, Lund Institute of Technology, Lund, Sweden

  • Herrmann HJ, Hansen A, Roux S (1989) Fracture of disordered, elastic lattices in two dimensions. Phys Rev B 39(1): 637–648. doi:10.1103/PhysRevB.39.637

    Article  Google Scholar 

  • Ince R, Arslan A, Karihaloo BL (2003) Lattice modelling of size effect in concrete strength. Eng Fract Mech 70(16): 2307–2320. doi:10.1016/S0013-7944(02)00219-9

    Article  Google Scholar 

  • Jirásek M, Bažant ZP (1994) Macroscopic fracture characteristics of random particle systems. Int J Fract 69: 201–228. doi:10.1007/BF00034763

    Article  Google Scholar 

  • Jirásek M, Bažant ZP (1995) Particle model for quasibrittle fracture and application to sea ice. J Eng Mech-ASCE 121 (9):1016–1025. doi:http://dx.doi.org/10.1061/(ASCE)0733-9399(1995)121:9(1016)

  • Kawai T (1978) New discrete models and their application to seismic response analysis of structures. Nucl Eng Des 48(1): 207–229. doi:10.1016/0029-5493(78)90217-0

    Article  Google Scholar 

  • Kozicki J, Tejchman J (2006) 2D lattice model for fracture in brittle materials. Arch Hydro-Eng Environ Mech 53(2): 137–154

    Google Scholar 

  • Leite JPB, Slowik V, Mihashi H (2004) Computer simulation of fracture processes of concrete using mesolevel models of lattice structures. Cem Concr Res 34(6): 1025–1033. doi:10.1016/j.cemconres.2003.11.011

    Article  CAS  Google Scholar 

  • Lilliu G, van Mier JGM (2003) 3D lattice type fracture model for concrete. Eng Fract Mech 70(7-8): 927–941. doi:10.1016/S0013-7944(02)00158-3

    Article  Google Scholar 

  • Lilliu G, van Mier JGM (2007) On the relative use of micro-mechanical lattice analysis of 3-phase particle composites. Eng Fract Mech 74(7): 1174–1189. doi:10.1016/j.engfracmech.2006.12.018

    Article  Google Scholar 

  • Man HK, van Mier JGM (2008a) Influence of particle density on 3D size effects in the fracture of (numerical) concrete. Mech Mater 40(6): 470–486. doi:10.1016/j.mechmat.2007.11.003

    Article  Google Scholar 

  • Man HK, van Mier JGM (2008b) Size effect on strength and fracture energy for numerical concrete with realistic aggregate shapes. Int J Fract 154(1-2): 61–72. doi:10.1007/s10704-008-9270-y

    Article  Google Scholar 

  • Man HK, van Mier JGM (2011) Damage distribution and size effect in numerical concrete from lattice analyses. Cem Concr Compos 33(9): 867–880. doi:10.1016/j.cemconcomp.2011.01.008

    Article  CAS  Google Scholar 

  • Nooru-Mohamed MB (1992) Mixed-mode fracture of concrete: an experimental approach. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands

  • Nooru-Mohamed MB, Shlangen E, van Mier JGM (1993) Experimental and numerical study on the behavior of concrete subjected to biaxial tension and shear. Adv Cem Based Mater 1(1): 22–37. doi:10.1016/1065-7355(93)90005-9

    Article  CAS  Google Scholar 

  • Østergaard L, Olesen JF, Poulsen PN (2007) Biaxial testing machine for mixed mode cracking of concrete. In: Carpinteri A, Gambarova PG, Ferro G, Plizzari G (eds) Fracture mechanics of concrete and concrete structures—new trends in fracture mechanics of concrete. Taylor & Francis Group, London, pp 263–270

    Google Scholar 

  • Ostoja-Starzewski M, Sheng PY, Jasiuk I (1997) Damage patterns and constitutive response of random matrix-inclusion composites. Eng Fract Mech 58(5–6): 581–606. doi:10.1016/S0013-7944(97)00046-5

    Article  Google Scholar 

  • Petersen RB (2008) Fracture mechanical analysis of reinforced concrete-experiments and FEM modelling. Master’s thesis, Department of Civil Engineering, Technical University of Denmark, Anker Engelundsvej 1, 2800 Kgs. Lyngby, Denmark

  • Prado EP, van Mier JGM (2003) Effect of particle structure on mode I fracture process in concrete. Eng Fract Mech 70(14): 1793–1807. doi:10.1016/S0013-7944(03)00125-5

    Article  Google Scholar 

  • Rots JG, Belletti B, Invernizzi S (2008) Robust modeling of RC structures with an “event-by-event” strategy. Eng Fract Mech 75(3–4): 590–614. doi:10.1016/j.engfracmech.2007.03.027

    Article  Google Scholar 

  • Roux S, Guyon E (1985) Mechanical percolation: a small beam lattice study. J Phys Lett-Paris 46(21): 999–1004. doi:10.1051/jphyslet:019850046021099900

    Google Scholar 

  • Sagar RV, Prasad BKR, Karihaloo BL (2010) Verification of the applicability of lattice model to concrete fracture by AE study. Int J Fract 161(2): 121–129. doi:10.1007/s10704-009-9431-7

    Article  Google Scholar 

  • Schlangen E (1993) Experimental and numerical analysis of fracture processes in concrete. Ph.D. thesis, Delft University of Technology, Netherlands

  • Schlangen E, Garboczi EJ (1997) Fracture simulations of concrete using lattice models: Computational aspects. Eng Fract Mech 57(2–3): 319–332. doi:10.1016/S0013-7944(97)00010-6

    Article  Google Scholar 

  • Schlangen E, Koenders E, van Breugel K (2007) Influence of internal dilation on the fracture behaviour of multi-phase materials. Eng Fract Mech 74(1-2): 18–33. doi:10.1016/j.engfracmech.2006.01.033

    Article  Google Scholar 

  • Skoček J, Stang H (2010) Application of optical deformation analysis system on wedge splitting test and its inverse analysis. Mater Struct 43(1): 63–72. doi:10.1617/s11527-010-9597-5

    Google Scholar 

  • van Mier JGM, van Vliet MRA (2003) Influence of microstructure of concrete on size/scale effects in tensile fracture. Eng Fract Mech 70(16): 2281–2306. doi:10.1016/S0013-7944(02)00222-9

    Article  Google Scholar 

  • van Mier JGM, Chiaia BM, Vervuurt A (1997) Numerical simulation of chaotic and self-organizing damage in brittle disordered materials. Comput Method Appl Mech Eng 142(1-2): 189–201. doi:10.1016/S0045-7825(96)01128-0

    Article  Google Scholar 

  • van Mier JGM, van Vliet MRA, Wang TK (2002) Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mech Mater 34(11): 705–724. doi:10.1016/S0167-6636(02)00170-9

    Article  Google Scholar 

  • van Vliet MRA (2000) Size effect in tensile fracture of concrete and rock. Ph.D. thesis, Delft University of Technology, Delft, Netherlands

  • Vořechovský M, Eliáš J (2010) Relations between structure size, mesh density, and elemental strength of lattice models. In: Bićanić N, de Borst R, Mang H, Meschke G (eds) Proceedings of EURO-C 2010, computational modelling of concrete structure, held in rohrmoos/schladming, Austria, CRC Press/Balkema, The Netherlands, pp 419–428

  • Yip M, Li Z, Liao BS, Bolander JE (2006) Irregular lattice models of fracture of multiphase particulate materials. Int J Fract 140(1–4): 113–124. doi:10.1007/s10704-006-7636-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Eliáš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliáš, J., Stang, H. Lattice modeling of aggregate interlocking in concrete. Int J Fract 175, 1–11 (2012). https://doi.org/10.1007/s10704-012-9677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9677-3

Keywords

Navigation