Skip to main content

Advertisement

Log in

Microstructure and stray electric fields at surface cracks in ferroelectrics

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Ferroelectric perovskites are widely used in transducer, memory and optical applications due to their attractive electromechanical and optical properties. In these brittle materials, reliability and failure of devices is dominated by the behavior of cracks. The electromechanical coupling causes cracks to interact strongly with both mechanical as well as electrical fields. Additionally, cracks and domain patterns interact strongly with each other. Hence, an understanding of the electromechanics of cracks requires an accounting of all these interactions. In this work, we apply a real-space phase-field method to compute the stresses, domain patterns, and stray electric fields in the vicinity of a stationary crack, defined here as a geometric feature that causes large but bounded stress. We investigate the effects of charge compensation on the crack face, crack orientation with respect to the crystal lattice, and applied far-field stress and electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi A, Arias I (2011) Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Mater 59(12): 4733–4746

    Article  CAS  Google Scholar 

  • Dayal K, Bhattacharya K (2007a) A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Mater 55(6): 1907–1917

    Article  CAS  Google Scholar 

  • Dayal K, Bhattacharya K (2007b) Active tuning of photonic device characteristics during operation by ferroelectric domain switching. J Appl Phys 102: 064102

    Article  Google Scholar 

  • El-Naggar MY, Dayal K, Goodwin DG, Bhattacharya K (2006) Graded ferroelectric capacitors with robust temperature characteristics. J Appl Phys 100: 114115

    Article  Google Scholar 

  • Fang D, Jiang Y, Li S, Sun CT (2007) Interactions between domain switching and crack propagation in poled batio3 single crystal under mechanical loading. Acta Mater 55(17): 5758–5767

    Article  CAS  Google Scholar 

  • Jiang Y, Zhang Y, Liu B, Fang D (2009) Study on crack propagation in ferroelectric single crystal under electric loading. Acta Mater 57(5): 1630–1638

    Article  CAS  Google Scholar 

  • Landis CM (2003) On the fracture toughness of ferroelastic materials. J Mech Phys Solids 51(8): 1347–1369

    Article  Google Scholar 

  • Landis CM (2004) Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41: 6291–6315

    Article  Google Scholar 

  • Li LJ, Yang Y, Shu YC, Li JY (2010) Continuum theory and phase-field simulation of magnetoelectric effects in multiferroic bismuth ferrite. J Mech Phys Solids 58(10): 1613–1627

    Article  CAS  Google Scholar 

  • Li LJ, Lei CH, Shu YC, Li JY (2011) Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys. Acta Mater 59(7): 2648–2655

    Article  CAS  Google Scholar 

  • Li W, Landis CM (2011) Nucleation and growth of domains near crack tips in single crystal ferroelectrics. Eng Fract Mech 78(7): 1505–1513

    Article  Google Scholar 

  • Lynch CS (1998) Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field1. Acta Mater 46(2): 599–608

    Article  CAS  Google Scholar 

  • Schneider GA (2007) Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu Rev Mater Res 37(1): 491

    Article  CAS  Google Scholar 

  • Schneider GA, Felten F, McMeeking RM (2003) The electrical potential difference across cracks in pzt measured by kelvin probe microscopy and the implications for fracture. Acta Mater 51(8): 2235–2241

    Article  CAS  Google Scholar 

  • Scott JF (2000) Ferroelectric memories. Springer, New York

    Google Scholar 

  • Shu YC, Bhattacharya K (2001) Domain patterns and macroscopic behaviour of ferroelectric materials. Philos Mag Part B 81(12): 2021–2054

    Article  CAS  Google Scholar 

  • Sun X, Su YJ, Gao KW, Guo LQ, Qiao LJ, Chu WY, Zhang TY (2011) Surface potential distribution in an indentation-pre-cracked batio3 single crystal. J Am Ceram Soc 94(12): 4299–4304

    Article  CAS  Google Scholar 

  • Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) Ferroelectric materials for microwave tunable applications. J Electroceram 11: 5–66

    Article  CAS  Google Scholar 

  • Uchino K (1996) Piezoelectric actuators and ultrasonic motors. Kluwer, Dordrecht

    Google Scholar 

  • Wang J, Landis CM (2004) On the fracture toughness of ferroelectric ceramics with electric field applied parallel to the crack front. Acta Mater 52(12): 3435–3446

    Article  CAS  Google Scholar 

  • Wang J, Zhang TY (2007) Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater 55(7): 2465–2477

    Article  CAS  Google Scholar 

  • Westram I, Oates WS, Lupascu DC, Rodel J, Lynch CS (2007) Mechanism of electric fatigue crack growth in lead zirconate titanate. Acta Mater 55(1): 301–312

    Article  CAS  Google Scholar 

  • Xu BX, Schrade D, Gross D, Mueller R (2011) Fracture simulation of ferroelectrics based on the phase field continuum and a damage variable. Int J Fract 166(1): 163–172

    Article  Google Scholar 

  • Xu BX, Schrade D, Gross D, Mueller R (2010) Phase field simulation of domain structures in cracked ferroelectrics. Int J Fract 165(2): 163–173

    Article  Google Scholar 

  • Xu Y (1991) Ferroelectric materials and their applications. North-Holland

  • Yang L, Dayal K (2010) Formulation of phase-field energies for microstructure in complex crystal structures. Appl Phys Lett 96: 081916

    Article  Google Scholar 

  • Yang L, Dayal K (2011a) A completely iterative method for the infinite domain electrostatic problem with nonlinear dielectric media. J Comput Phys 230(21): 7821–7829

    Article  CAS  Google Scholar 

  • Yang L, Dayal K (2011b) Effect of lattice orientation, surface modulation, and applied fields on free-surface domain microstructure in ferroelectrics. Acta Mater 59(17): 6594–6603

    Article  CAS  Google Scholar 

  • Zhang W, Bhattacharya K (2005) A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater 53(1): 185–198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Dayal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Dayal, K. Microstructure and stray electric fields at surface cracks in ferroelectrics. Int J Fract 174, 17–27 (2012). https://doi.org/10.1007/s10704-011-9670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9670-2

Keywords

Navigation