Skip to main content
Log in

A cohesive crack model coupled with damage for interface fatigue problems

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An semi-analytical formulation based on the cohesive crack model is proposed to describe the phenomenon of fatigue crack growth along an interface. Since the process of material separation under cyclic loading is physically governed by cumulative damage, the material deterioration due to fatigue is taken into account in terms of interfacial cohesive properties degradation. More specifically, the damage increment is determined by the current separation and a history variable. The damage variable is introduced into the constitutive cohesive crack law in order to capture the history-dependent property of fatigue. Parametric studies are presented to understand the influences of the two parameters entering the damage evolution law. An application to a pre-cracked double-cantilever beam is discussed. The model is validated by experimental data. Finally, the effect of using different shapes of the cohesive crack law is illustrated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM G 168 (2000) Standard practice for making and using precracked double beam stress corrosion specimens. ASTM Annual Book of ASTM Standards, vol 03.02

  • Bouvard JL, Chaboche JL, Feyel F, Gallerneau F (2009) A cohesive zone model for fatigue and creep-fatigue crack growth in single crystal superalloys. Int J Fatigue 31: 868–879

    Article  CAS  Google Scholar 

  • Carpinteri A (1985) Interpretation of the Griffith instability as a bifurcation of the global equilibrium. In: Shah S (ed) Application of fracture mechanics to cementitious composites (Proceedings of NATO advanced research workshop, Evanston, USA). Martinus Nijhoff, Dordrecht, pp 287–316

  • Carpinteri A, Di Tommaso A, Fanelli M (1985) Influence of material parameters and geometry on cohesive crack propagation. In: Wittmann FH (ed) Fracture toughness and fracture energy of concrete. Elsevier, Amsterdam, pp 117–135

    Google Scholar 

  • Carpinteri A, Paggi M, Zavarise G (2008) The effect of contact on the decohesion of laminated beams with multiple microcracks. Int J Solids Struct 45: 129–143

    Article  CAS  Google Scholar 

  • Chaboche JL, Lesne PM (1988) A non-linear continuous fatigue damage model. Fatigue Fract Eng Mater Struct 11: 1–7

    Article  Google Scholar 

  • Chaboche JL (1988) Continuum damage mechanics: part I-general concepts. J Appl Mech 55: 59–64

    Article  Google Scholar 

  • Chaboche JL (1988) Continuum damage mechanics: part II-Damage growth, crack initiation, and crack growth. J Appl Mech 55: 65–72

    Article  Google Scholar 

  • Cornetti P, Pugno N, Carpinteri A, Taylor D (2006) Finite fracture mechanics: a coupled stress and energy failure criterion. Eng Fract Mech 73: 2021–2033

    Article  Google Scholar 

  • de-Andrés A, Pérez JL, Ortiz M (1999) Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading. Int J Solids Struct 36: 2231–2258

    Article  Google Scholar 

  • Dowling NE, Begley JA (1976) Fatigue crack growth during gross plasticity and the J-integral. ASTM STP 590: 82–103

    CAS  Google Scholar 

  • Elices M, Planas J, Guinea GV (2000) Fracture mechanics applied to concrete. In: Freutes M, Elices M, Martin-Meizoso A, Martmez-Esnaola JM (eds) Fracture mechanics: applications and challenges. ESIS publication 26. Elsevier, Amsterdam

    Google Scholar 

  • Hertzberg RW (1995) Deformation and fracture mechanics of engineering materials. Wiley, New York

    Google Scholar 

  • Kachanov LM (1958) On the time to failure under creep conditions. Izvestia Akademii Nauk SSSR, Otdelenie tekhnicheskich nauk 8: 26–31

    Google Scholar 

  • Krajcinovich D (1984) Continuum damage mechanics. Appl Mech Rev 37: 1–6

    Google Scholar 

  • Lemaitre J, Plumtree A (1979) Application of damage concept to predict creep-fatigue failures. ASME J Eng Mater Technol 101(3): 284–292

    Article  CAS  Google Scholar 

  • Lemaitre J (1996) A course on damage mechanics. Springer, Berlin

    Book  Google Scholar 

  • Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 21: 61–72

    Article  Google Scholar 

  • Maiti S, Geubelle PH (2005) A cohesive model for fatigue failure of polymers. Eng Fract Mech 72: 691–708

    Article  Google Scholar 

  • Maiti S, Geubelle PH (2006) Cohesive modelling of fatigue crack retardation in polymers: crack closure effect. Eng Fract Mech 73: 22–41

    Article  Google Scholar 

  • Mostovoy S, Ripling EJ (1975) Flaw tolerance of a number of commercial and experimental adhesives. Plenum Press, New York

    Google Scholar 

  • Neumann P (1974) The geometry of slip processes at a propagating fatigue crack-II. Acta Metal 22: 1167–1178

    Article  Google Scholar 

  • Needleman A (1990) An analysis of tensile decohesion along an interface. J Mech Phys Solids 38: 289–324

    Article  Google Scholar 

  • Needleman A (1990) An analysis of decohesion along an imperfect interface. Int J Fract 42: 21–40

    Article  Google Scholar 

  • Nguyen O, Repetto EA, Ortiz M, Radovitzky RA (2001) A cohesive model of fatigue crack growth. Int J Fract 110: 351–369

    Article  Google Scholar 

  • Paris PC, Gomez MP, Anderson WP (1961) A rational analytic theory of fatigue. Trend Eng 13: 9–14

    Google Scholar 

  • Pirondi A, Nicoletto G (2004) Fatigue crack growth in bonded DCB specimens. Eng Fract Mech 71: 859–871

    Article  Google Scholar 

  • Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70: 209–232

    Article  Google Scholar 

  • Suo Z, Bao G, Fan B (1992) Delamination R-curve phenomena due to damage. J Mech Phys Solids 40: 1–16

    Article  Google Scholar 

  • Skibo MD, Hertzberg RW, Manson JA, Kim SL (1977) On the generality of discontinuous fatigue crack growth in glassy polymers. J Mater Sci 12: 531–542

    Article  CAS  Google Scholar 

  • Taylor D, Cornetti P, Pugno N (2005) The fracture mechanics of finite crack extension. Eng Fract Mech 72: 1021–1038

    Article  Google Scholar 

  • Wang J (1992) A continuum damage mechanic model for low-cycle fatigue failure of metals. Eng Fract Mech 41: 437–441

    Article  Google Scholar 

  • Wang T, Lou Z (1990) A continuum damage model for weld heat affected lone under low cycle fatigue loading. Eng Fract Mech 37: 825–829

    Article  Google Scholar 

  • Williams J, Hadavinia H (2002) Analytical solutions for cohesive zone models. J Mech Phys Solids 50: 809–825

    Article  Google Scholar 

  • Xu XP, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Model Simul Mater Sci Eng 1: 111–132

    Article  Google Scholar 

  • Yang B, Mall S, Ravi-Chandar K (2001) A cohesive zone model for fatigue crack growth in quasibrittle materials. Int J Solids Struct 38: 3927–3944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoming Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, B., Paggi, M. & Carpinteri, A. A cohesive crack model coupled with damage for interface fatigue problems. Int J Fract 173, 91–104 (2012). https://doi.org/10.1007/s10704-011-9666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9666-y

Keywords

Navigation