Skip to main content
Log in

Development of a Cohesive Zone Model for Fatigue Crack Growth

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, fatigue damage is combined with a cohesive zone model to simulate fatigue crack growth along the interface between dissimilar materials under repeated loadings. An evolution equation for fatigue damage is considered for the degradation of materials in a failure process zone. The potential-based Park–Paulino–Roesler cohesive model is employed to correctly consider mixed modes in the relationships between cohesive tractions and crack opening separations. Numerical examples show that the present method can predict properly fatigue crack growth along the interface between dissimilar materials under repeated loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z.H. Jin, G.H. Paulino, R.H. Dodds, Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials. Eng. Fract. Mech. 70(14), 1855–1912 (2003)

    Article  Google Scholar 

  2. P.W. Harper, S.R. Hallett, A fatigue degradation law for cohesive interface elements—development and application to composite materials. Int. J. Fatigue 32(11), 1774–1787 (2010)

    Article  Google Scholar 

  3. B. Landry, G. LaPlante, Modeling delamination growth in composites under fatigue loadings of varying amplitudes. Compos. B 43(2), 533–541 (2012)

    Article  Google Scholar 

  4. M. May, S.R. Hallett, A combined model for initiation and propagation of damage under fatigue loading for cohesive interface elements. Compos. A 41(12), 1787–1796 (2010)

    Article  Google Scholar 

  5. A. Turon, J. Costa, P.P. Camanho, C.G. Davila, Simulation of delamination in composites under high-cycle fatigue. Compos. A 38(11), 2270–2282 (2007)

    Article  Google Scholar 

  6. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd edn. (CRC Press, Boca Raton, 2005), pp. 25–61

    Book  Google Scholar 

  7. D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  8. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  9. A. Hillerborg, M. Modeer, P.E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concr. Res. 6, 773–782 (1976)

    Article  Google Scholar 

  10. Z.Y.J. Zhang, G.H. Paulino, Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. Int. J. Plast. 21(6), 1195–1254 (2005)

    Article  Google Scholar 

  11. M.J. van den Bosch, P.J.G. Schreurs, M.G.D. Geers, An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng. Fract. Mech. 73(9), 1220–1234 (2006)

    Article  Google Scholar 

  12. A. Needleman, A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54(3), 525–531 (1987)

    Article  Google Scholar 

  13. V. Tvergaard, J.W. Hutchinson, The influence of plasticity on mixed-mode interface toughness. J. Mech. Phys. Solids 41(6), 1119–1135 (1993)

    Article  Google Scholar 

  14. X.P. Xu, A. Needleman, Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mater. Sci. Eng. 1(2), 111–132 (1993)

    Article  Google Scholar 

  15. L. Bankssills, Y. Bortman, A mixed-mode fracture specimen—analysis and testing. Int. J. Fract. 30(3), 181–201 (1986)

    Article  Google Scholar 

  16. K. Park, G.H. Paulino, Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl. Mech. Rev. 64(6), 1 (2011)

    Article  Google Scholar 

  17. V. Tvergaard, Material failure by void growth to coalescence. Adv. Appl. Mech. 27, 83–151 (1990)

    Article  Google Scholar 

  18. A. Needleman, An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38(3), 289–324 (1990)

    Article  Google Scholar 

  19. K. Park, G.H. Paulino, J.R. Roesler, A unified potential-based cohesive model of mixed-mode fracture. J. Mech. Phys. Solids 57(6), 891–908 (2009)

    Article  Google Scholar 

  20. K.L. Roe, T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70(2), 209–232 (2003)

    Article  Google Scholar 

  21. A. Abdul-Baqi, P.J.G. Schreurs, M.G.D. Geers, Fatigue damage modeling in solder interconnects using a cohesive zone approach. Int. J. Solids Struct. 42(3–4), 927–942 (2005)

    Article  Google Scholar 

  22. M. Erinc, P.J.G. Schreurs, M.G.D. Geers, Integrated numerical–experimental analysis of interfacial fatigue fracture in SnAgCu solder joints. Int. J. Solids Struct. 44(17), 5680–5694 (2007)

    Article  Google Scholar 

  23. M. Erinc, T.M. Assman, P.J.G. Schreurs, M.G.D. Geers, Fatigue fracture of SnAgCu solder joints by microstructural modeling. Int. J. Fract. 152(1), 37–49 (2008)

    Article  Google Scholar 

  24. M. Erinc, P.J.G. Schreurs, M.G.D. Geers, Intergranular thermal fatigue damage evolution in SnAgCu lead-free solder. Mech. Mater. 40(10), 780–791 (2008)

    Article  Google Scholar 

  25. Q.D. Yang, M.D. Thouless, Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int. J. Fract. 110(2), 175–187 (2001)

    Article  Google Scholar 

  26. J.R. Reeder, J.H. Crews, Mixed-mode bending method for delamination testing. AIAA J. 28(7), 1270–1276 (1990)

    Article  Google Scholar 

  27. M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A2B6006234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Gyu Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YH., Kim, HG. Development of a Cohesive Zone Model for Fatigue Crack Growth. Multiscale Sci. Eng. 2, 42–53 (2020). https://doi.org/10.1007/s42493-020-00034-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-020-00034-5

Keywords

Navigation