Skip to main content
Log in

Two-dimensional analysis of anisotropic crack problems using coupled meshless and fractal finite element method

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper presents a coupling technique for integrating the element-free Galerkin method (EFGM) with fractal the finite element method (FFEM) for analyzing homogeneous, anisotropic, and two dimensional linear-elastic cracked structures subjected to mixed-mode (modes I and II) loading conditions. FFEM is adopted for discretization of domain close to the crack tip and EFGM is adopted in the rest of the domain. In the transition region interface elements are employed. The shape functions within interface elements which comprises both the element-free Galerkin and the finite element shape functions, satisfies the consistency condition thus ensuring convergence of the proposed coupled EFGM-FFEM. The proposed method combines the best features of EFGM and FFEM, in the sense that no structured mesh or special enriched basis functions are necessary and no post-processing (employing any path independent integrals) is needed to determine fracture parameters such as stress-intensity factors (SIFs) and T − stress. The numerical results based on all four orthotropic cases show that SIFs and T − stress obtained using the proposed method are in excellent agreement with the reference solutions for the structural and crack geometries considered in the present study. Also a parametric study is carried out to examine the effects of the integration order, the similarity ratio, the number of transformation terms, and the crack length to width ratio on the quality of the numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aluru NR (2000) A point collocation method based on reproducing kernel approximations. Int J Numer Methods Eng 47: 1083–1121

    Article  MATH  Google Scholar 

  • Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22: 117–127

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Lu YY, Gu L (1995a) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51: 295– 315

    Article  ADS  Google Scholar 

  • Belytschko T, Organ D, Krongauz Y (1995b) Coupled finite element–element-free Galerkin method. Comput Mech 17: 186–195

    MATH  MathSciNet  Google Scholar 

  • Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139: 3–47

    Article  MATH  Google Scholar 

  • Bowie OL, Freese CE (1972) Central crack in plane orthotropic rectangular sheet. Int J Fract Mech 8(1): 49–57

    Article  Google Scholar 

  • Cardew GE, Goldthorpe MR, Howard IC, Kfouri AP (1984) On the elastic T-term. Fundamentals of deformation and fracture. In: Bilby BA, Miller KJ, Willis JR (eds) Cambridge University Press, Cambridge

  • Chen JS, Wang HP (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4): 441–468

    Article  MATH  Google Scholar 

  • Chen T, Raju IS (2003) A coupled finite element and meshless local Petrov–Galerkin method for two-dimensional potential problems. Comput Methods Appl Mech Eng 192: 4533–4550

    Article  MATH  Google Scholar 

  • Chu SJ, Hong CS (1990) Application of the J k integral to mixed mode crack problems for anisotropic composite laminates. Eng Fract Mech 35(6): 1093–1103

    Article  Google Scholar 

  • Cook RD, Malkus DS, Plesha ME (2001) Concepts and Applications of Finite Element Analysis. John Wiley and Sons, New York

    Google Scholar 

  • Delale F, Erdogan F (1977) The problem on internal and edge cracks in an orthotropic strip. ASME J Appl Mech 44(2): 237–242

    MATH  Google Scholar 

  • Duarte CAM, Oden JT (1996) H-p clouds—an h-p meshless method. Numer Methods Partial Differ Equ 12(6): 673–705

    Article  MATH  MathSciNet  Google Scholar 

  • Fleming M, Chu YA, Moran B, Belytschko T, Lu YY, Gu L (1997) Enriched element-free Galerkin methods for crack-tip fields. Int J Numer Methods Eng 40: 1483–1504

    Article  Google Scholar 

  • Gu YT, Liu GR (2001) A coupled element free Galerkin/boundary element method for stress analysis of two-dimensional solids. Comput Methods Appl Mech Eng 190(34): 4405–4419

    Article  Google Scholar 

  • Hegen D (1996) Element-free Galerkin methods in combination with finite element approaches. Comput Methods Appl Mech Eng 135: 143–166

    Article  MATH  ADS  Google Scholar 

  • Hu CB, Li YT, Gong J (1998) The transition method of geometrically similar element for dynamic crack Problem. Key Eng Mater 145–149(Part 1): 267–272

    Article  Google Scholar 

  • Huerta A, Fernandez-Mendez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48: 1615–1636

    Article  MATH  Google Scholar 

  • Idelsohn SR, Oñate E, Calvo N, Pin FD (2003) The meshless finite element method. Int J Numer Methods Eng 58: 893–912

    Article  MATH  Google Scholar 

  • Kaya AC, Erdogan F (1980) Stress intensity factors and COD in an orthotropic strip. Int J Fract 16(2): 171–190

    Article  Google Scholar 

  • Krishnamurthy T, Raju IS (1993) Coupling finite and boundary element methods for two-dimensional potential problems. Int J Numer Methods Eng 36: 3593–3616

    Article  Google Scholar 

  • Krongauz Y, Belytschko T (1996) Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Eng 131(1-2): 133–145

    Article  MATH  MathSciNet  Google Scholar 

  • Lancaster P, Salkauskas K (1981) Surfaces generated by moving least sqaures methods. Math Comput 37: 141–158

    Article  MATH  MathSciNet  Google Scholar 

  • Lekhnitskii SG (1963) Theory of elasticity of an anisotropic elastic body. Holden Day., Inc, San Francisco

    MATH  Google Scholar 

  • Lekhnitskii SG, Tsai SW, Cheron T (1968) Anisotropic plates. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Leung AYT, Su RKL (1994) Mode I crack problems by fractal two-level finite element methods. Eng Fract Mech 48(6): 847–856

    Article  Google Scholar 

  • Leung AYT, Su RKL (1995a) Mixed mode twodimensional crack problems by fractal two-level finite element method. Eng Fract Mech 51(6): 889–895

    Article  Google Scholar 

  • Leung AYT, Su RKL (1995b) A numerical study of singular stress field of 3-D cracks. Finite Elem Anal Des 18: 389–401

    Article  MATH  Google Scholar 

  • Leung AYT, Su RKL (1996a) Fractal two-level finite element method for cracked Kirchhoff’s plates using DKT elements. Eng Fract Mech 54(5): 703–711

    Article  Google Scholar 

  • Leung AYT, Su RKL (1996b) Applications of fractal two-level finite element method for 2D cracks. Microcomput Civ Eng 11(4): 249–257

    Article  Google Scholar 

  • Leung AYT, Su RKL (1996c) Fractal two-level finite element analysis of cracked reissner’s plate. Thin Walled Struct 24(4): 315–334

    Article  Google Scholar 

  • Leung AYT, Su RKL (1998a) Two-level finite element study of axisymmetric cracks. Int J Fract 89(2): 193–203

    Article  Google Scholar 

  • Leung AYT, Su RKL (1998b) Eigenfunction expansion for penny-shaped and circumferential cracks. Int J Fract 89(3): 205–222

    Article  Google Scholar 

  • Leung AYT, Su RKL (1998c) Fractal Two-Level Finite Element Method for Free Vibration of Cracked Beams. J Shock Vib 5(1): 61–68

    Google Scholar 

  • Li S, Liu WK (2001) Meshfree and particle methods and their applications. Appl Mech Rev 55: 1–34

    Article  Google Scholar 

  • Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20: 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  • Liu GR, Gu YT (2000a) Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Comput Mech 26: 536–546

    Article  MATH  Google Scholar 

  • Liu GR, Gu YT (2000b) Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation. Comput Mech 26: 166–173

    Article  MATH  Google Scholar 

  • Liu GR, Zhang GY, Dai KY (2005) A linearly conforming point interpolant method (LC-PIM) for 2d solid mechanics problems. Int J Comput Methods 2: 645–665

    Article  MATH  Google Scholar 

  • Lu YY, Belytschko T, Liu WK (1991) A variationally coupled FE-BE method for elasticity and fracture mechanics. Comput Methods Appl Mech Eng 85: 21–37

    Article  MATH  MathSciNet  Google Scholar 

  • Lu YY, Belytschko T, Gu L (1994) New implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113: 397–414

    Article  MATH  MathSciNet  Google Scholar 

  • Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 280–314

    Article  MathSciNet  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30: 543–574

    Article  ADS  Google Scholar 

  • Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10: 307–318

    Article  MATH  Google Scholar 

  • Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: A review and computer implementation aspects. Math Comput Simul 79: 763–813

    Article  MATH  MathSciNet  Google Scholar 

  • Organ DJ, Fleming M, Terry T, Belytschko T (1996) Continuous meshless approximations for non-convex bodies by diffraction and transparency. Comput Mech 18: 225–235

    Article  MATH  Google Scholar 

  • Preparata FP, Shamos MI (1990) Computational geometry: an introduction. Springer, New York

    Google Scholar 

  • Rao BN, Rahman S (2000) An efficient meshless method for fracture analysis of cracks. Comput Mech 26: 398–408

    Article  MATH  Google Scholar 

  • Rao BN, Rahman S (2001) A coupled meshless-finite element method for fracture analysis of cracks. Int J Press Vessel Pip 78: 647–657

    Article  Google Scholar 

  • Sedgewick R (1988) Algorithms. Addison-Wesley, Reading, MA

    Google Scholar 

  • Singh IV (2004) A numerical solution of composite heat transfer problems using meshless method. Int J Heat Mass Transf 47: 2123–2138

    Article  MATH  Google Scholar 

  • Song CM, Wolf JP (2002) Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method. Comput Struct 80: 183–197

    Article  Google Scholar 

  • Su RKL, Leung AYT (2001a) Mixed mode cracks in reissner plates. Int J Fract 107(3): 235–257

    Article  CAS  Google Scholar 

  • Su RKL, Leung AYT (2001b) Three-dimensional mixed mode analysis of a cracked body by fractal finite element method. Int J Fract 110(1): 1–20

    Article  Google Scholar 

  • Su RKL, Sun HY (2002) Numerical solution of cracked Thin plates subjected to bending, twisting and shear loads. Int J Fract 117(4): 323–335

    Article  Google Scholar 

  • Su RKL, Sun HY (2003) Numerical Solutions of Two-Dimensional Anisotropic Crack Problems. Int J Solids Struct 40: 4615–4635

    Article  MATH  Google Scholar 

  • Su RKL, Sun HY (2005) A Brief Note on Elastic Tstress for Centred Crack in Anisotropic Plate. Int J Fract 131: 53–58

    Article  Google Scholar 

  • Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43: 839–887

    Article  MATH  MathSciNet  Google Scholar 

  • Sun HY (2003) Fractal finite element method for anisotropic crack problems, M.Phil thesis. The University of Hong Kong

  • Wagner GJ, Liu WK (2001) Hierarchical enrichment for bridging scales and mesh-free boundary conditions. Int J Numer Methods Eng 50: 507–524

    Article  MATH  MathSciNet  Google Scholar 

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech 24: 109–114

    MATH  Google Scholar 

  • Xie JF, Fok SL, Leung AYT (2003) A parametric study on the fractal finite element method for two-dimensional crack problems. Int J Numer Methods Eng 58: 631–642

    Article  MATH  Google Scholar 

  • Zhang GY, Liu GR, Wang YY, Huang HT, Zhong ZH, Li GY, Han X (2007) A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. Int J Numer Methods Eng 72: 1524–1543

    Article  MathSciNet  Google Scholar 

  • Zhang LT, Wagner GJ, Liu WK (2002) A parallelized meshfree method with boundary enrichment for large-scale CFD. J Comput Phys 176: 483–506

    Article  MATH  ADS  CAS  Google Scholar 

  • Zhang X, Yao ZH, Zhang ZF (2006) Application of MLPG in large deformation analysis. Acta Mechanica Sinica 22: 331–340

    Article  MathSciNet  ADS  Google Scholar 

  • Zhu T, Zhang JD, Atluri SN (1998) A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Comput Mech 21: 223–235

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz OC, Kelly DW, Bettress F (1977) The coupling of the finite element method and boundary solution procedures. Int J Numer Methods Eng 11: 355–375

    Article  MATH  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth-Heinemann, London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajesh, K.N., Rao, B.N. Two-dimensional analysis of anisotropic crack problems using coupled meshless and fractal finite element method. Int J Fract 164, 285–318 (2010). https://doi.org/10.1007/s10704-010-9496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9496-3

Keywords

Navigation