Skip to main content
Log in

Some aspects of cohesive models and modelling with special application to strength of adhesive layers

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An overview of recent development of cohesive modelling is given. Cohesive models are discussed in general and specifically for the modelling of adhesive layers. It is argued that most cohesive models model a material volume and not a surface. Detailed microscopic and mesomechanical studies of the fracture process of an engineering epoxy are discussed. These studies show how plasticity on the mesomechanical length scale contributes to the fracture energy in shear dominated load cases. Methods to measure cohesive laws are presented in a general setting. Conclusions and conjectures based on experimental and mesomechanical studies are presented. The influence of temperature and strain rate on the peak stress and fracture energy of cohesive laws indicates fundamentally different mechanisms responsible for these properties. Experiments and mesomechanical studies show that in-plane straining of an adhesive layer can give large contributions to the registered fracture energy. Finite element formulations including a method to incorporate this influence are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RD, Comyn J, Wake WC (1997) Structural adhesive joints in engineering. 2. Springer, Berlin

    Google Scholar 

  • Alfredsson KS (2003) On the determination of constitutive properties of adhesive layers loaded in shear an inverse solution. Int J Fract 123: 49–62

    Article  Google Scholar 

  • Alfredsson KS (2004) On the instantaneous energy release rate of the end-notch flexure adhesive joint specimen. Int J Solids Struct 41: 4787–4807

    Article  MATH  Google Scholar 

  • Alfredsson KS, Stigh U (2009) Stability of beam-like fracture mechanics specimens (submitted)

  • Andersson T, Biel A (2006) On the effective constitutive properties of a thin adhesive layer loaded in peel. Int J Fract 141(1–2): 227–246

    Article  Google Scholar 

  • Andersson T, Stigh U (2004) The stress-elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces. Int J Solids Struct 41: 413–434

    Article  Google Scholar 

  • Bäcklund J (1981) Fracture analysis of notched composites. Comput Struct 13: 145–154

    Article  Google Scholar 

  • Bao G, Suo Z (1992) Remarks on crack-bridging concepts. Appl Mech Rev 24: 355–366

    Article  Google Scholar 

  • Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7: 55–129

    Article  MathSciNet  Google Scholar 

  • Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, London

    MATH  Google Scholar 

  • Biel A (2008) Mechanical behaviour of adhesive layers, F1-F18, Thesis for the degree of PhD, Chalmers University of Technology, Göteborg

  • Carlberger T (2008) Adhesive Joining for Crashworthiness, D1-D11, Thesis for the degree of PhD, Chalmers University of Technology, Göteborg

  • Carlberger T, Stigh U (2007) An explicit FE-model of impact fracture in an adhesive joint. Eng Fract Mech 74: 2247–2262

    Article  Google Scholar 

  • Carlberger T, Alfredsson KS, Stigh U (2008) FE-formulation of interphase elements for adhesive joints. Int J Comput Methods Eng Sci Mech 9(5): 288–299

    Article  MATH  Google Scholar 

  • Carlberger T, Biel A, Stigh U (2009) Influence of temperature and strain rate on cohesive properties of a structural epoxy adhesive. Int J Fract 155: 155–166

    Article  CAS  Google Scholar 

  • Chai H (1986) Bond thickness effect in adhesive joints and its significance for mode I interlaminar fracture of composites. In: Composite materials: testing and design, ASTM STP 893, Philadelphia, pp 209–231

  • Cox BN, Yang QD (2007) Cohesive zone models of localization and fracture in bone. Eng Fract Mech 74: 1079–1092

    Article  Google Scholar 

  • Dávila CG, Rose CA, Camanho PP (2009) A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int J Fract 158: 211–223

    Article  MATH  Google Scholar 

  • Goland M, Reissner E (1944) The stresses in cemented joints. ASME J Appl Mech 66: A17–A27

    Google Scholar 

  • Groth H (1988) Stress singularities and fracture at interface corners in bonded joints. Int J Adh Adhesives 8(2): 107–113

    Article  CAS  Google Scholar 

  • Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6: 773–782

    Article  Google Scholar 

  • Högberg JL, Sørensen BF, Stigh U (2007) Constitutive behaviour of mixed mode loaded adhesive layer. Int J Solids Struct 44: 8335–8354

    Article  MATH  Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives—science and technology. Chapman and Hall, London

    Google Scholar 

  • Leffler K, Alfredsson KS, Stigh U (2007) Shear behaviour of adhesive layers. Int J Solids Struct 44: 530–545

    Article  MATH  Google Scholar 

  • Needleman A (1987) A continuum model for void nucleation by inclusion debonding. ASME J Appl Mech 54: 525–531

    Article  MATH  Google Scholar 

  • Nilsson F (2001) Fracture mechanics—from theory to applications. Department of Solid Mechanics, KTH, Stockholm

    Google Scholar 

  • Nilsson F (2006) Large displacement aspects on fracture testing with double cantilever beam specimen. Int J Fract 139: 305–311

    Article  Google Scholar 

  • Olsson P, Stigh U (1989) On the determination of the constitutive properties of thin interphase layers An exact inverse solution. Int J Fract 41(4): R71–R76

    Article  Google Scholar 

  • Östlund S, Nilsson F (1993) Cohesive zone modelling of damage at the tip of cracks in slender beam structures. Fatigue Eng Mater Struct 16(6): 663–676

    Article  Google Scholar 

  • Paris AJ, Paris PC (1988) Instantaneous evaluation of J and C *. Int J Fract 38: R19–R21

    Google Scholar 

  • Pettersson KB, Neumeister JM, Gamstedt K, Oberg H (2006) Stiffness reduction, creep, and irreversible strains in fiber composites tested in repeated interlaminar shear. Compos Struct 76(1–2): 151–161

    Article  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximative analysis of strain concentration by notches and cracks. ASME J Appl Mech 88: 379–386

    Google Scholar 

  • Salomonsson K (2008) Mixed mode modeling of a thin adhesive layer using a meso-mechanical model. Mech Mater 40(8): 665–672

    Article  Google Scholar 

  • Salomonsson K, Andersson T (2008) Modeling and parameter calibration of an adhesive layer at the meso level. Mech Mater 40(1–2): 48–65

    Article  Google Scholar 

  • Salomonsson K, Stigh U (2008) An adhesive interphase element for structural analyses. Int J Numer Meth Eng 76: 482–500

    Article  MATH  MathSciNet  Google Scholar 

  • Salomonsson K, Stigh U (2009) Influence of root curvature on the fracture energy of adhesive layers. Eng Fract Mech 76(13): 2025–2038

    Article  Google Scholar 

  • Schmidt P (2008) Modelling of adhesively bonded joints by an asymptotic method. Int J Eng Sci 46: 1291–1324

    Article  CAS  Google Scholar 

  • Sørensen BF, Jacobsen TK (1998) Large-scale bridging in composites: R-curves and bridging laws. Compos Part A 29: 1443–1451

    Article  Google Scholar 

  • Sørensen BF, Kirkegaard P (2006) Determination of mixed mode cohesive laws. Eng Fract Mech 73: 2642–2661

    Article  Google Scholar 

  • Stigh U (1987) Initiation and growth of an interface crack. In: Mechanical behaviour of adhesive joints, Bordeaux, France: Pluralis, Paris, France

  • Stigh U (1988) Damage and crack growth analysis of the double cantilever beam specimen. Int J Fract 37: R13–18

    Article  Google Scholar 

  • Stigh U, Andersson T (2010) Critical time step for cohesive elements and explicit FEA, (submitted)

  • Stigh U, Alfredsson KS, Biel A (2009) Measurement of cohesive laws and related problems. In: Proceedings of ASME international mechanical engineering congress and exposition Lake Buena Vista, Florida, USA

  • Sun C, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2008) Ductile-brittle transitions in the fracture of plastically-deforming, adhesively-bonded structures: II numerical studies. Int J Solids Struct 45: 4725–4738

    Article  MATH  Google Scholar 

  • Turon A, Dávila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74: 1665–1682

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40: 1377–1397

    Article  MATH  ADS  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42: 1397–1434

    Article  MATH  ADS  Google Scholar 

  • Yang Q, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133: 107–137

    Article  MATH  Google Scholar 

  • Yang QD, Thouless MD (2001) Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int J Fract 110: 175–187

    Article  Google Scholar 

  • Yang QD, Cox BN, Nalla RK, Ritchie RO (2006) Re-evaluating the toughness of human cortical bone. Bone 38: 878–887

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Stigh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stigh, U., Alfredsson, K.S., Andersson, T. et al. Some aspects of cohesive models and modelling with special application to strength of adhesive layers. Int J Fract 165, 149–162 (2010). https://doi.org/10.1007/s10704-010-9458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9458-9

Keywords

Navigation