Skip to main content
Log in

The shielding effects of the crack-tip plastic zone

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

An Erratum to this article was published on 10 August 2011

Abstract

In this paper we demonstrate that a plastically deformed zone around a stressed crack tip can be, mechanically, identified with an inclusion of transformation strain by means of Eshelby equivalent inclusion method. Thus, the shielding effect of the plastic zone can be quantitatively evaluated by the present transformation toughening theory. A closed-form solution to determine the change in the stress intensity factor induced by the plastic zone is given both for plane stress and plane strain mode I cracks under small-scale yielding conditions. By using the present solution, the effects of the strain-hardening behavior of the material, the plane stress and plane strain states and the T-stress on the crack-tip shielding effects are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayatollahi MR, Pavier MJ, Smith DJ (2002) Mode I cracks subjected to large T-stresses. Int J Fract 117: 159–174

    Article  Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 5: 55–129

    Article  MathSciNet  Google Scholar 

  • Becker W, Gross D (1968) About the Dugdale crack under mixed-mode loading. Int J Fract 37: 163–171

    Article  Google Scholar 

  • Betagon C, Hancock JW (1991) Two parameter characterization of elastic-plastic crack-tip fields. J Appl Mech 58: 104–110

    Article  Google Scholar 

  • Bonfoh N, Lipinski P, Carmasol A, Tiem S (2004) Micromechanical modeling of ductile damage of polycrystalline materials with heterogeneous particles. Int J Plast 20: 85–106

    Article  MATH  Google Scholar 

  • Budiansky B, Hutchinson JW, Lambropoulos JC (1983) Continuum theory of dilatant transformation toughening in ceramics. Int J Solids Struct 19: 337–355

    Article  MATH  Google Scholar 

  • Ding F, Feng M, Jiang Y (2007) Modeling of fatigue crack growth from a notch. Int J Plast 23: 1167–1188

    Article  CAS  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8: 100–108

    Article  ADS  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic fields of an ellipsoidal inclusion, and related problem. In: Proceeding of the Royal Society, Vol. 241. London, Series A, 376-396

  • Evans AG, Faber KT (1983) Crack growth resistance of microcracking brittle materials. J Am Ceram Soc 67: 255–260

    Article  Google Scholar 

  • Gao X, Dodds RH Jr (2001) An engineering approach to assess constraint effect on cleavage fracture toughness. Eng Fract Mech 68: 263–283

    Article  Google Scholar 

  • Hillerborg A (1985) The theoretical basis of a method to determine the fracture energy G F of concrete. Mater Struct 18: 291–296

    Article  Google Scholar 

  • Hutchinson JW (1968) Plastic stress and strain fields at a crack tip. J Mech Phys Solids 16: 337–347

    Article  ADS  Google Scholar 

  • Hutchinson JW (1987) Crack tip shielding by micracracking in brittle solids. Acta Metall 35: 1605–1619

    Article  CAS  Google Scholar 

  • Ippolito M, Mattoni A, Colombo L, Cleri F (2005) Fracture toughness of nanostructured silicon carbide. Appl Phys Lett 87: 141912

    Article  ADS  CAS  Google Scholar 

  • Ippolito M, Mattoni A, Colombo L, Pugno (2006) Role of lattice discreteness on brittle fracture: atomistic simulations versus analytical models. Phys Rev B 73: 104111

    Article  ADS  CAS  Google Scholar 

  • Irwin GR (1960) Plastic zone near a crack and fracture toughness. Prov Seventh Sagomore Ordnance Mater Res Conf IV: 63–78

    Google Scholar 

  • Jiang Y, Kurath P (1996) Characteristics of the Armstrong–Frederick type plasticity models. Int J Plast 12: 387–415

    Article  MATH  CAS  Google Scholar 

  • Jiang Y, Feng M, Ding F (2005) A reexamination of plasticity-induced crack closure in fatigue crack propagation. Int J Plast 21: 1720–1740

    Article  MATH  CAS  Google Scholar 

  • Johoson WC, Earmme YY, Lee JK (1980) Approximation of the strain field associated with an inhomegeneous precipitate. J Appl Mech 47: 775–780

    Article  Google Scholar 

  • Kang KJ, Beom HG (2000) Plastic zone size near the crack tip in a constrained ductile layer under mixed mode loading. Eng Fract Mech 66: 257–268

    Article  Google Scholar 

  • Khan SMA, Khraisheh MK (2004) A new criterion for mixed mode fracture initiation based on the crack tip plastic core region. Int J Plast 20: 55–84

    Article  MATH  Google Scholar 

  • Lambropoulous JC (1986) Shear, shape and orientation effects in transformation toughening in ceramics. Int J Solids Struct 22: 1083–1106

    Article  Google Scholar 

  • Larsson SG, Carlsson AJ (1973) Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack-tip in elastic-plastic materials. J Mech Phys Solids 21: 447–473

    Article  Google Scholar 

  • Li R, Chudnovsky A (1993) Energy analysis of crack interaction with an elastic inclusion. Int J Fract 63: 247–261

    Article  ADS  Google Scholar 

  • Li Z, Chen Q (2002) Crack-inclusion for mode I crack analyzed by Eshelby equivalent inclusion method. Int J Fract 118: 29–40

    Article  Google Scholar 

  • Li Z, Duan J (2002) The effect of a plastically deformed zone near crack tip on the stress intensity factors. Int J Fract 117: L29–L34

    Article  Google Scholar 

  • Li Z, Yang L (2002) The application of the Eshelby equivalent inclusion method for unifying modulus and transformation toughening. Int J Solids Struct 39: 5225–5240

    Article  MATH  Google Scholar 

  • Li Z, Yang L (2004) The near-tip stress intensity factor for a crack partially penetrating an inclusion. J Appl Mech 71: 465–469

    Article  MATH  Google Scholar 

  • Li Z, Zhao Y, Schmauder S (1993) A cohesion model of microcrack toughening. Eng Fract Mech 44: 257–265

    Article  Google Scholar 

  • Li Z, Yang L, Li S, Sun J (2007) The stress intensity factors for a short crack partially penetrating an inclusion of arbitrary shape. Int J Fruct 148: 243–250

    Article  Google Scholar 

  • Lipkin DM, ClarKe DR, Beltz GE (1996) A strain gradient model of cleavage fracture in plastically deforming materials. Acta Mater 44: 4051–4058

    Article  CAS  Google Scholar 

  • McClung RC (1991) Crack closure and plastic zone sizes in fatigue. Fatigue Fract Eng Mater Struct 14: 455–468

    Article  Google Scholar 

  • McMeeking RM (1977) Finite deformation analysis of crack-tip opening in elastic-plastic materials and implication for fracture. J Mech Phys Solids 25:357–381

    Article  CAS  ADS  Google Scholar 

  • Moschobidis ZA, Mura T (1975) Two ellipsoidal inhomegeneities by the equivalent inclusion method. J Appl Mech 42: 847–852

    Google Scholar 

  • Mura T (1987) Micromechanics of defects in solids. Second Revised Edition. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Neimitz A (2004) Modification of Dugdale model to include the work hardening and in and out-of-plane constraints. Eng Fract Mech 71: 1585–1600

    Article  Google Scholar 

  • O’Dowd NP, Shih CF (1992) Family of crack-tip fields characterized by a triaxiality parameter-II. Fracture applications. J Mech Phys Solids 40: 939–963

    Article  Google Scholar 

  • Panasyuk VV, Sayruk MP (1992) Plastic strip model in elastic-plastic problems of fracture mechanics. Adv Mech 15: 123–147

    Google Scholar 

  • Pandey AB, Majumdar BS, Miracle DB (1998) Effects of thickness and precracking on the fracture toughness of particle-reinforced Al-alloy composites. Metall Mater Trans 29: 1237–1243

    Article  Google Scholar 

  • Park HB, Kim KM, Lee BW (1996) Plastic zone size in fatigue cracking. Int J Vessel Pip 68: 279–285

    Article  CAS  Google Scholar 

  • Rice JR (1974) Limitations to the small scale yielding approximation for crack tip plasticity. J Mech Phys Solids 22: 17–26

    Article  ADS  Google Scholar 

  • Rice JR, Johnson MA (1970) Inelastic behavior of solids. Kanninen MF, Adler WF, Rosenfield AR, Jaffee RI (eds) McGraw-Hill, New York, p 641

  • Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16: 1–12

    Article  MATH  ADS  Google Scholar 

  • Robert H, Dodds JR, Anderson Ted L, Kirk Mark T (1991) A framework to correlate a/w ratio effects on elastic-plastic fracture toughness (J c ). Int J Fract 48: 1–22

    Article  Google Scholar 

  • Sun X, Li H, Chang C (1994) Measurement and research on plane stress fracture toughness K c . Aerosp Mater Technol 2: 53–56 (in Chinese)

    Google Scholar 

  • Suo Z, Shih CF, Varias AG (1993) A theory for cleavage cracking in the presence of plastic flow. Acta Metall Mater 41: 151–1557

    Google Scholar 

  • Taya M, Chou TW (1981) On two kinds ellipsoidal inhomegeneities in an infinite elastic body: an application to a hybrid composites. Int J Solids Struct 17: 553–563

    Article  MATH  Google Scholar 

  • Tijssens MGA, Vander Gissen E, Sluys LJ (2000) Modeling of crazing using a cohesive surface methodology. Mech Mater 32: 19–35

    Article  Google Scholar 

  • Wang X (2003) Elastic T-stress solutions for semi-elliptical surface cracks in finite thickness plates. Eng Fract Mech 70: 731–756

    Article  Google Scholar 

  • Weertman J (1996) Dislocation based fracture mechanics. Word Scientific, Singapore

    Google Scholar 

  • Wei Y, Xu G (2005) A multiscale model for the ductile fracture of crystalline materials. Int J Plast 21: 2123–2149

    Article  MATH  CAS  Google Scholar 

  • Withers DJ, Stobbs WM, Pederson OB (1989) The application of the Eshelby method of internal stress determination to short fibre metal matrix composites. Acta Mettall 37: 3061–3084

    Article  CAS  Google Scholar 

  • Yang L, Chen Q, Li Z (2004) Crack-inclusion interaction for mode II crack analyzed by Eshelby equivalent inclusion method. Eng Fract Mech 71: 1421–1433

    Article  Google Scholar 

  • Zhou C, Li Z (2007) The effect of T-stress on crack-inclusion interaction under mode I loading. Mech Res Commun 34: 283–288

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Li.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10704-011-9618-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, P., Yang, L., Li, Z. et al. The shielding effects of the crack-tip plastic zone. Int J Fract 161, 131–139 (2010). https://doi.org/10.1007/s10704-009-9435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9435-3

Keywords

Navigation