Skip to main content
Log in

Analytical and numerical treatment of a dynamic crack model

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We discuss the propagation of a running crack in a bounded linear elastic body under shear waves for a simplified 2D-model. This model is described by two coupled equations in the actual configuration: a two-dimensional scalar wave equation in a cracked, bounded domain and an ordinary differential equation derived from an energy balance law. The unknowns are the displacement fields u  =  u(y, t) and the one-dimensional crack tip trajectory h  =  h(t). We assume that the crack grows straight. Based on a paper of Nicaise-Sändig, we derive an improved formula for the ordinary differential equation of motion for the crack tip, where the dynamical stress intensity factor occurs. The numerical simulation is an iterative procedure starting from the wave field at time t  =  t i . The dynamic stress intensity factor will be extracted at t  =  t i . Its knowledge allows us to compute the crack-tip motion h(t i+1) with corresponding nonuniform crack speed assuming (t i+1t i ) is small. Now, we start from the cracked configuration at time t  =  t i+1 and repeat the steps. The wave displacements are computed with the FEM-package PDE2D. Some numerical examples demonstrate the proposed method. The influence of finite length of the crack and finite size of the sample on the dynamic stress intensity factor will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM E 1823-96 (1996) Standard terminology relating to fatigue ans fracture testing, Annual book of ASTM Standards, vol. 03.01. American Society for Testing and Materials, West Conshohocken

  • Atluri SN, Nishioka T (1985) Numerical studies in dynamic fracture mechanics. In: Williams ML, Knauss WG(eds) Dynamic fracture. Martinus Nijhoff Publishers, Dodrecht, pp 119–135

    Google Scholar 

  • Bratov V, Petrov Y (2007) Application of incubation time approach to simulate dynamic crack propagation. Int J Fract 146: 53–60

    Article  CAS  Google Scholar 

  • Brenner SC (1999) Multigrid methods for the computation of singular solutions and stress intensity factors I: corner singularities. Math Comput 68(226): 559–583

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer Verlag

  • Broberg KB (1999) Cracks and fracture, [u.a.]. Academic Press, San Diego, California

    Google Scholar 

  • Brokate M, Khludnev A (2004) On crack propagation shapes in elastic bodies. Z Angew Math Phys 55: 318–329

    MATH  MathSciNet  Google Scholar 

  • Buehler MJ, Gao H, Huang Y (2003) Atomistic and continuum studies of a suddenly stopping supersonic crack. Comput Mater Sci 28: 385–408

    Article  Google Scholar 

  • Ciarlet PG (1976) The finite element method for elliptic problems. North-Holland Publishing Company

  • Charoenphan S (2002) Computer methods for modeling the progressive damage of composite material plates and tubes. PHD Thesis, University of Wisconsin-Madison

  • Dauge M (1988) Elliptic boundary value problems on corner domains, Lecture notes in mathematics 1341, Springer-Verlag, Berlin-Heidelberg, MR 91a:35078

  • Destuynder P, Jaoua M (1981) Sur une interprétation mathématique de l’intégrale de Rice en théorie de la rupture fragile. Math Methods Appl Sci 3: 70–87

    Article  MATH  MathSciNet  Google Scholar 

  • Erdogan F (1968) Crack-propagation theories, Chap. 5. In: (eds) Fracture, vol II. Academic Press, New York

    Google Scholar 

  • Freund LB (1973) Crack propagation in an elastic solid subjected to general loading. III Stress wave loading. J Mech Phys Solids 21: 47–61

    Article  MATH  ADS  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, New York

    MATH  Google Scholar 

  • Freund LB, Clifton RJ (1974) On the uniqueness of plate elastodynamic solutions for running cracks. J Elast 4(4): 293–299

    Article  MATH  Google Scholar 

  • Freund LB, Rosakis AJ (1992) The structure of the near tip field solution during transient elastodynamic crack growth. J Mech Phys Solids 40: 699–719

    Article  ADS  CAS  Google Scholar 

  • Freund LB, Duffy J and Rosakis AJ (1981) Dynamic fracture initiation in metals and preliminary results on the method of caustics for crack propagation measurements, Cambridge University Press

  • Friedman A, Hu B, Velazquez JJL (2000) The evolution of stress intensity factors and the propagation of cracks in elastic media. Arch Ration Mech Anal 152: 103–139

    Article  MATH  MathSciNet  Google Scholar 

  • Grisvard P (1985) Elliptic problems in nonsmooth domains, Pitman. Boston MR 86m:35044

  • Großmann C, Roos H-G (2005) Numerische Behandlung partieller Differentialgleichungen. B.G. Teubner Verlag

  • Gross D (1996) Bruchmechanik. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Kerkhof F (1965) Habilitationsschrift, Karlsruhe

  • Kobayashi AS, Mall S (1978) Dynamic fracture toughness of Homalite 100. Exp Mech 18: 11–18

    Article  Google Scholar 

  • Kondrat’ev VA (1967) Boundary value problems for elliptic equations in domains with conical or angular points. Trans Moscow Math Soc 16: 227–313

    MATH  Google Scholar 

  • Koslov VA, Maz’ya VG, Rossmann J (1997) Elliptic boundary value problems in domains with point singularities, American Mathematical Society, Providence

  • Kostrov BV (1966) Unsteady propagation of longitudinal shear cracks. Appl Math Mech 30: 1241–1248

    Article  Google Scholar 

  • Kovtunenko VA (2001) Sensitivity of cracks in 2D-Lam’e problem via material derivatives. Z Angew Math Phys 52: 1071–1087

    Article  MATH  MathSciNet  Google Scholar 

  • Lee Y, Prakash V (1998) Dynamic fracture toughness versus crack tip speed relationship at lower than room temperature for high strength 4340var structural steel. J Mech Phys Solids 46(10): 1943–1967

    Article  MATH  ADS  CAS  Google Scholar 

  • Maz’ya VG, Plamenevskii BA (1978) On the coefficients in the asymptotics of the solutions of an elliptic boundary value problem in domains with conical points. J Soviet Math 9: 750–764

    Article  MATH  Google Scholar 

  • Morozov N, Petrov Y (2000) Dynamics of fracture. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Nazarov SA, Plamenesvkii BA (1994) Elliptic problems in domians with piecewise smooth boundaries, expositions in mathematics, vol 13. de Gruyter, Berlin, MR 95h:35001

  • Nicaise S, Sändig A-M (2007) Dynamical crack propagation in a 2D elastic body The out-of plane state. J Math Anal Appl 329: 1–30

    Article  MATH  MathSciNet  Google Scholar 

  • Nishioka T, Atluri SN (1986) Computational methods in dynamic fracture. In: Atluri SN (ed) Computational methods in the mechanics of fracture, Chap. 10, Elsevier Science Publishers, pp 335-383

  • Ohyoshi T (1973) Effect of orthotropy on singular stresses produced near a crack tip by incident SH-waves. ZAMM 53: 409–411

    Article  MATH  Google Scholar 

  • Owen DM, Zhuang S, Rosakis AJ, Ravichandran G (1998) Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets. Int J of Fract 90: 153–174

    Article  CAS  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1982) Dynamic crack-tip stresses under stress wave loading—A comparison of theroy and experiment. Int J Fract 20: 209–222

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984) An experimental investigation into the mechanics of dynamic fracture: I. Crack initiation and arrest. Int J Fract 25: 247–262

    Article  Google Scholar 

  • Ravichandran G, Clifton RJ (1989) Dynamic fracture undr plane wave loading. Int J Fract 40: 157–201

    Article  CAS  Google Scholar 

  • Rosakis G, Ravichandran G (2000) Dynamic failure mechanics. Int J Solids Struct 37: 331–348

    Article  MATH  Google Scholar 

  • Rosakis AJ, Duffy J, Freund LB (1984) The determination od dynamic fracture toughness of AISI 4340 steel by the shadow spot method. J Mech Phys Solids 32: 443–460

    Article  ADS  Google Scholar 

  • Rosakis AJ, Liu C, Freund LB (1991) A note on the asymptotic stress field of a non-uniformly propagating dynamic crack. Int J Fract 50: R39–R45

    Article  Google Scholar 

  • Sändig A-M, Nicaise S, Lalegname A (2007) Dynamic crack propagation in a 2D elastic body. The out-of plane case. ICIAM 07. ETH Zürich

  • Sewell G PDE2D, University of Texas, El Paso. http://www.pde2d.com

  • Sewell G (2005) The numerical solution of ordinary and partial differential equations, 2nd Edn. Wiley

  • Schwab C (1998) P- and hp-finite element methods. Oxford University Press

  • Schwalbe K-H, Landes JD, Heerens J (2007/14) Classical fracture mechanics methods. Comprehensive structural integrity. Online update, vol 11. GKSS 2007/14

  • Seelig Th (1997) Zur Simulation der dynamischen Rißausbreitung mit einer Zeitbereichs-Randelementmethode. Ph.D. Thesis, TH Darmstadt, Germany

  • Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press

  • Takahashi K, Arakawa K (1987) Dependence of crack acceleration on the dynamic stress–intensity factor in polymers. Exp Mech 27: 195–199

    Article  Google Scholar 

  • Tvergaard V, Hutchinson J (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40(6): 1377–1397 http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/exper/gordon/www/fractough.html

  • Williams T et al. (2004) GnuPlot, version 4.0. Technical report, Pixar Corporation, http://www.gnuplot.info/2004

  • Yang B, Ravi-Chandar K (1996) On the role of the process zone in dynamic fracture. J Mech Phys Solids 44(12): 1955–1976

    Article  ADS  Google Scholar 

  • Zehnder AT, Rosakis AJ (1990) Dynamic fracture initiation and propagation in 4340 steel under impact loading. Int J Fract 43(4): 271–285

    Article  CAS  Google Scholar 

  • Zhang Ch (1993) On wave propagation in cracked solids Habilitationsschrift. TH Darmstadt, Germany

    Google Scholar 

  • Zhang Ch, Gross D (1993) Interaccion of antiplane cracks with elastic waves in transversely isotropic materials. Acta Mechanica 101: 231–247

    Article  MATH  Google Scholar 

  • Zhou F, Shioya T (1996) Energy balance analysis on mode-III dynamic crack propagation in fixed sided strip. Int J Fract 80: 33–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lalegname.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalegname, A., Sändig, A.M. & Sewell, G. Analytical and numerical treatment of a dynamic crack model. Int J Fract 152, 97–125 (2008). https://doi.org/10.1007/s10704-008-9274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-008-9274-7

Keywords

Navigation