Skip to main content
Log in

Mechanics of tunnelling cracks in trilayer elastic materials in tension

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this work, the crack driving force for a tunnelling crack in a thin brittle layer confined by dissimilar thick, and more compliant, elastic layers is considered at tensile loading. The steady-state energy release rate is evaluated using distributed dislocation technique and series representation of the complex potentials for an isotropic trimaterial. Evolution of the energy release rate with the crack length is studied by means of FEM. The 3D FEM simulations for tunnel cracks suggest that the ERR can represented by a universal relation (mastercurve) in suitably normalised co-ordinates. An analytical approximation of the ERR mastercurve is obtained as a function of crack length, cracking layer thickness, and a non-dimensional steady-state ERR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrico JM, Begley MR (2002) The role of initial flaw size, elastic compliance and plasticity in channel cracking of thin films. Thin Solid Films 419: 144–153

    Article  CAS  Google Scholar 

  • Ambrico JM, Jones EE, Begley MR (2002) Cracking in thin multi-layers with finite-width and periodic architectures. Int J Solids Struct 39: 1443–1462

    Article  Google Scholar 

  • Bateman H, Erdélyi A (1953) Higher transcendental functions, vol 2. McGraw-Hill, Book Company Inc., New York

    Google Scholar 

  • Berthelot J-M (2003) Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading. Appl Mech Rev 56: 111–147

    Article  Google Scholar 

  • Beuth JL (1992) Cracking of thin bonded films in residual tension. Int J Solids Struct 29: 1657–1675

    Article  Google Scholar 

  • Beuth JL, Klingbeil NW (1996) Cracking of thin films bonded to elastic–plastic substrates. J Mech Phys Solids 44: 1411–1428

    Article  Google Scholar 

  • Bouten PCP, Slikkerveer PJ, Leterrier Y (2005) Mechanics of ITO on plastic substrates for flexible displays. In: Crawford GP (ed) Flexible flat panel displays. Wiley, pp 99–120

  • Chakravarthy SS, Jordan EH, Chiu WKS (2005) Thin film and substrate cracking under the influence of externally applied loads. Eng Fract Mech 72: 1286–1298

    Article  Google Scholar 

  • Chan KS, He MY, Hutchinson JW (1993) Cracking and stress redistribution in ceramic layered composites. Mater Sci Eng A 167: 57–64

    Article  Google Scholar 

  • Choi ST, Earmme YY (2002) Elastic study on singularities interacting with interfaces using alternating technique Part II. Isotropic trimaterial. Int J Solids Struct 39: 1199–1211

    Article  Google Scholar 

  • Erdogan F, Gupta GD, Cook TS (1973) Numerical solution of singular integral equations. In: Sih GC (eds) Mechanics of fracture, vol 1. Methods of analysis and solutions of crack problems. Noordhoff, Leyden, pp 368–425

    Google Scholar 

  • Evans AG, Hutchinson JW (1995) The thermomechanical integrity of thin films and multilayers. Acta Metall Mater 43: 2507–2530

    Article  CAS  Google Scholar 

  • Hills DA, Kelly PA, Dai DN, Korsunsky AM (1996) Solution of crack problems: the distributed dislocation technique. Kluwer

  • Ho S, Suo Z (1993) Tunneling cracks in constrained layers. J Appl Mech 60: 890–894

    Article  Google Scholar 

  • Hu MS, Evans AG (1989) The cracking and decohesion of thin films on ductile substrates. Acta Metall 37: 917–925

    Article  CAS  Google Scholar 

  • Huang R, Prévost JH, Huang ZY, Suo Z (2003) Channel-cracking of thin films with the extended finite element method. Eng Fract Mech 70: 2513–2526

    Article  Google Scholar 

  • Hutchinson JW, Suo Z (1992) Mixed mode cracking in layered materials. Adv Appl Mech 29: 63–191

    Article  Google Scholar 

  • Kim S-R, Nairn JA (2000) Fracture mechanics analysis of coating/substrate systems: I. Analysis of tensile and bending experiments. Eng Fract Mech 65: 573–589

    Article  Google Scholar 

  • Korsunsky AM (2002) On the use of interpolative quadratures for hypersingular integrals in fracture mechanics. Proc R Soc Lond A 458: 2721–2733

    Google Scholar 

  • Leterrier Y (2003) Durability of nanosized oxygen-barrier coatings on polymers. Prog Mater Sci 48: 1–55

    Article  CAS  Google Scholar 

  • Nairn JA (2000) Matrix microcracking in composites. In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol. 2. Pergamon, pp 403–432

  • Nakamura T, Kamath SM (1992) Three-dimensional effects in thin film fracture mechanics. Mech Mater 13: 67–77

    Article  Google Scholar 

  • Rubinstein AA, Tang Y (2005) Micromechanical analysis of failure in thin protective coatings. Int J Solids Struct 42: 5831–5847

    Article  Google Scholar 

  • Slikkerveer PJ (2003) Bending the rules. Inf Disp 19: 20–24

    Google Scholar 

  • Suiker ASJ, Fleck NA (2004) Crack tunneling and plane-strain delamination in layered solids. Int J Fract 125: 1–32

    Article  Google Scholar 

  • Suo Z (1989) Singularities interacting with interfaces and cracks. Int J Solids Struct 25: 1133–1142

    Article  Google Scholar 

  • Suo Z, Ma EY, Gleskova H, Wagner S (1999) Mechanics of rollable and foldable film-on-foil electronics. Appl Phys Lett 74: 1177–1179

    Article  CAS  Google Scholar 

  • Tricomi FG (1951) On the finite Hilbert transformation. Quart J Math Oxford 2: 199–211

    Article  Google Scholar 

  • Tsui TY, McKerrow AJ, Vlassak JJ (2005) Constraint effects on thin film channel cracking behaviour. J Mater Res 20: 2266–2273

    Article  CAS  Google Scholar 

  • Vlassak JJ (2003) Channel cracking in thin films on substrates of finite thickness. Int J Fract 119/120: 299–323

    Article  Google Scholar 

  • Xia ZC, Hutchinson JW (2000) Crack patterns in thin films. J Mech Phys Solids 48: 1107–1131

    Article  CAS  Google Scholar 

  • Ye T, Suo Z, Evans AG (1992) Thin film cracking and the roles of substrate and interface. Int J Solids Struct 29: 2639–2648

    Article  Google Scholar 

  • Zak AR, Williams ML (1963) Crack point stress singularities at a bimaterial interface. J Appl Mech 30: 142–143

    Google Scholar 

  • Zhang X, Jeffrey RG (2006) Numerical studies on crack problems in three-layered elastic media using an image method. Int J Fract 139: 477–493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andersons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersons, J., Timmermans, P.H.M. & Modniks, J. Mechanics of tunnelling cracks in trilayer elastic materials in tension. Int J Fract 148, 233–241 (2007). https://doi.org/10.1007/s10704-008-9197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-008-9197-3

Keywords

Navigation