Skip to main content
Log in

Mixed mode fracture separation in viscoelastic orthotropic media: numerical and analytical approach by the Mθv -integral

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An analytical and numerical procedure based on an independent integral path and finite element analysis for mixed-mode fracture in viscoelastic orthotropic media is developed. The separated method employs virtual mechanics fields induced by the classical singular analytical forms. The viscoelastic generalization uses a thermodynamic approach by defining an energy release rate only taking into account a perfect uncoupling between free and viscous energies. The implementation of the Mθ-integral in finite element software and its integration into the viscoelastic incremental formulation are presented. As results, the analytical and numerical solutions are compared by the way of the energy release rate in pure mode I, pure mode II and mixed modes. In shows that, the developed model lead to accurate and efficient separated fracture mode in viscoelastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asadpoure A, Mohammadi S and Vafai A (2006). Modelling crack in orthotropic media using a coupled finite element and partition of unity methods. Finite Elem Anal Des 42: 1165–1175

    Article  Google Scholar 

  • Attigui M and Petit C (1997). Mixed-mode separation in dynamic fracture mechanics: new path independent integrals. Int J Fract 84: 19–36

    Article  Google Scholar 

  • Bui HD, Proix JM (1985) Découplage des modes mixtes de rupture en thermo-élasticité par des intégrales indépendantes du contour. Actes du Troisième Colloque Tendances Actuelles en Calcul de Structure, Bastia, pp 631–643

  • Charvet-Quemin F, Combescure A, Ebersol L, Charras Th, Millard A (1986). Méthode de calcul du taux de restitution de l’énergie en élastique et en non linéaire matériau. Report DEMT 86/438

  • Chazal C and Dubois F (2001). A new incremental formulation in the time domain of crack initiation in an orthotropic linearly viscoelastic solid. Mech Time-Depend Mat 5: 3–21

    Google Scholar 

  • Chen FMK and Shield RT (1977). Conservation laws in elasticity of the J-integral type. J Appl Mech Phys 28: 1–22

    Article  MathSciNet  Google Scholar 

  • Destuynder Ph, Djaoua M and Lescure S (1983). Quelques remarques sur la mécanique de la rupture élastique. J de Mécanique Théorique et Appliquée 2: 113–135

    MATH  Google Scholar 

  • Dubois F, Petit C (1999) Découplage des modes de rupture dans le bois: approche numérique par l’intégraleMθ. Revue Française de Génie Civil, pp 247–257

  • Dubois F and Petit C (2005). Modelling of the crack growth initiation in viscoelastic media by the Gθ v -integral. Eng Fract Mech 72: 2821–2836

    Article  Google Scholar 

  • Dubois F, Chazal C and Petit C (1999). Modelling of crack growth initiation in a linear viscoelastic material. J Theor Appl Mech 37: 207–222

    MATH  Google Scholar 

  • Dubois F, Chazal C and Petit C (2002). Viscoelastic crack growth process in wood timbers: an approach by the finite element method for mode I fracture. Int J Fract 113: 367–388

    Article  Google Scholar 

  • Ghazlan G, Caperaa S and Petit C (1995). An incremental formulation for the linear analysis of thin viscoelastic structures using generalized variables. Int J Numeric Methods Eng 38: 3315–33

    Article  MATH  Google Scholar 

  • Kim JH and Paulino GH (2002). Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method. Eng Fract Mech 69: 1557–1586

    Article  Google Scholar 

  • Nobile L, Piva A and Viola E (2004). On the inclined crack problem in an orthotropic medium under biaxial loading. Eng Fract Mech 71: 529–546

    Article  Google Scholar 

  • Noether E (1918). Invariant variations problem. Transport Theory Stat Phys 1: 183–207

    MathSciNet  Google Scholar 

  • Prabhu S and Lambros J (2002). Mixed mode asymptotic crack tip field in orthotropic materials: derivation and range of dominance. Int J Fract 118: 339–361

    Article  Google Scholar 

  • Richard HA and Benitz K (1983). A loading device for the creation of mixed mode in fracture mechanics. Int J Fract 22: R55–R58

    Article  Google Scholar 

  • Rice JR (1968). A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J Appl Mech 35: 379–386

    Google Scholar 

  • Sih GC (1974). Strain energy density factor applied to mixed mode crack problems. Int J Fract 10: 305–321

    Article  Google Scholar 

  • Staverman AJ and Schwarzl P (1952). Thermodynamics of viscoelastic behavior. Proc Acad Sci 55: 474–492

    Google Scholar 

  • Stefanie E, Stanzl-Tschegg (2006) Microstructure and fracture mechanical response of wood. Int J Fract 139:495–508

  • Suo XG and Combescure A (1992). On the application of the Gθ method and its comparison with the Lorenzi’s approach. Nucl Eng Des 135: 207–224

    Article  Google Scholar 

  • Valentin G and Morlier P (1982). A criterion of crack propagation in timber. Matériaux et constructions 88: 291–298

    Article  Google Scholar 

  • Van der Put TACM (2007). A new fracture mechanics theory for orthotropic materials like wood. Eng Fract Mech 74: 771–781

    Article  Google Scholar 

  • Zhang XB, Ma S, Recho N and Li J (2006). Bifurcation and propagation of a mixed-mode crack in a ductile material. Eng Fract Mech 73: 1925–1939

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dubois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitti, R.M., Dubois, F., Petit, C. et al. Mixed mode fracture separation in viscoelastic orthotropic media: numerical and analytical approach by the Mθv -integral. Int J Fract 145, 181–193 (2007). https://doi.org/10.1007/s10704-007-9111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-007-9111-4

Navigation