Skip to main content
Log in

Modeling the Past Hypothesis: A Mechanical Cosmology

  • Research
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

There is a paradox in the standard model of cosmology. How can matter in the early universe have been in thermal equilibrium, indicating maximum entropy, but the initial state also have been low entropy (the “past hypothesis"), so as to underpin the second law of thermodynamics? The problem has been highly contested, with the only consensus being that gravity plays a role in the story, but with the exact mechanism undecided. In this paper, we construct a well-defined mechanical model to study this paradox. We show how it reproduces the salient features of standard big-bang cosmology with surprising success, and we use it to produce novel results on the statistical mechanics of a gas in an expanding universe. We conclude with a discussion of potential uses of the model, including the explicit computation of the time-dependent coarse-grained entropies needed to investigate the past hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. An alternative approach [6, 7] to entropy increase in a system involves tracing or marginalizing over degrees of freedom outside the system, but in the case of our model cosmology there are none.

  2. Although the interpretation of the scale factor becomes unclear if the particle distribution is highly nonuniform, there is nothing formally wrong with the model in this regime.

  3. Although the model treats relativistic energies correctly, it is manifestly not a special- or general-relativistic model.

  4. The caveat is that the momenta also need to be treated, as they couple to a. The numerical price to pay is small, with a number of “momentum" computations of order N, compared to the number of particle-particle interaction computations, which is of order \(N^2.\)

  5. The 2nd term can be written as the volume integral of Lagrangian density using delta functions to produce a covariant matter action.

References

  1. Wallace, D.: Gravity, entropy, and cosmology: in search of clarity. Br. J. Philos. Sci. 61(3), 513–540 (2010). https://doi.org/10.1093/bjps/axp048. arXiv:0907.0659

    Article  MathSciNet  Google Scholar 

  2. Albert, D.Z.: Time and Chance. Harvard University Press, Cambridge, MA. (2000). https://doi.org/10.2307/j.ctvjsf57g

  3. Penrose, R.: Singularities and Time Asymmetry. Oxford University Press, Oxford (1980)

    Google Scholar 

  4. Rovelli, C.: Where was past low-entropy? Entropy 21(5), 466 (2019) https://doi.org/10.3390/e21050466arXiv:1812.03578

  5. Earman, J.: The “Past Hypothesis": not even false. Stud. Hist. Philos. Sci. B 37(3), 399–430 (2006). https://doi.org/10.1016/j.shpsb.2006.03.002

    Article  MathSciNet  Google Scholar 

  6. Brandão, F.G.S.L., Plenio, M.B.: Entanglement theory and the second law of thermodynamics. Nat. Phys. 4(11), 873–877 (2008). https://doi.org/10.1038/nphys1100

    Article  CAS  Google Scholar 

  7. Gemmer, J., Michel, M., Mahler, G.: Quantum Thermodynamics: Emergence of Thermodynamic Behavior Within Composite Quantum Systems, Vol. 784. Springer, Berlin (2009). https://doi.org/10.1007/b98082

  8. Padmanabhan, T.: Statistical mechanics of gravitating systems: an overview (2008) arXiv:0812.2610

  9. Aoki, S., Kawana, K.: Entropy and its conservation in expanding universe. Int. J. Mod. Phys. A 38(14), 2350072 (2023). https://doi.org/10.1142/S0217751X23500720

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Frautschi, S.C.: Entropy in an expanding universe. In: 10th Hawaii Topical Conference in High-energy Physics (1981). https://doi.org/10.1126/science.217.4560.593

  11. Lineweaver, C.H., Egan, C.A.: Life, gravity and the second law of thermodynamics. Phys. Life Rev. 5(4), 225–242 (2008). https://doi.org/10.1016/j.plrev.2008.08.002

    Article  ADS  Google Scholar 

  12. Weber, B.H., Depew, D.J., Smith, J.D., Dyke, C.: Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution, pp. 23–40. MIT Press, Cambridge (1988)

    Google Scholar 

  13. Layzer, D.: Cosmogenesis: The Growth of Order in the Universe. Oxford University Press USA, New York (1990)

    Google Scholar 

  14. Kremer, G.M., Devecchi, F.P.: Thermodynamics and kinetic theory of relativistic gases in 2d cosmological models. Phys. Rev. D (2002). https://doi.org/10.1103/physrevd.65.083515

    Article  Google Scholar 

  15. Kremer, G.M.: Diffusion of relativistic gas mixtures in gravitational fields. Physica A 393, 76–85 (2014). https://doi.org/10.1016/j.physa.2013.09.019

    Article  ADS  MathSciNet  Google Scholar 

  16. Haba, Z.: Thermodynamics of diffusive DM/DE systems. Gen. Relat. Gravit. (2017). https://doi.org/10.1007/s10714-017-2224-9

    Article  MathSciNet  Google Scholar 

  17. Tindall, J., Torres-Rincon, J.M., Rose, J.B., Petersen, H.: Equilibration and freeze-out of an expanding gas in a transport approach in a Friedmann-Robertson-Walker metric. Phys. Lett. B 770, 532–538 (2017). https://doi.org/10.1016/j.physletb.2017.04.080

    Article  ADS  CAS  Google Scholar 

  18. Zimdahl, W.: Cosmological particle production and generalized thermodynamic equilibrium. Phys. Rev. D 57(4), 2245–2254 (1998). https://doi.org/10.1103/physrevd.57.2245

    Article  ADS  CAS  Google Scholar 

  19. Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73, 046901 (2010). https://doi.org/10.1088/0034-4885/73/4/046901arXiv:0911.5004

  20. Hu, B.L.: Gravity and nonequilibrium thermodynamics of classical matter. Int. J. Mod. Phys. D 20(05), 697–716 (2011). https://doi.org/10.1142/s0218271811019049

    Article  ADS  CAS  Google Scholar 

  21. Oppenheim, J.: Area scaling entropies for gravitating systems. Phys. Rev. D 65, 024020 (2001). https://doi.org/10.1103/PhysRevD.65.024020

    Article  ADS  CAS  Google Scholar 

  22. Arnowitt, R., Deser, S., Misner, C.W.: Republication of: the dynamics of general relativity. Gen. Relat. Gravit. 40(9), 1997–2027 (2008). https://doi.org/10.1007/s10714-008-0661-1

    Article  ADS  Google Scholar 

  23. Corichi, A., Núñez, D.: Introduction to the ADM formalism. Rev. Mex. Fis. 37, 720–747 (1991) arXiv:2210.10103

  24. Bojowald, M.: Quantum cosmology: a review. Rep. Prog. Phys. 78(2), 023901 (2015). https://doi.org/10.1088/0034-4885/78/2/023901

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  25. Berredo-Peixoto, G., Shapiro, I.L., Sobreira, F.: Simple cosmological model with relativistic gas. Mod. Phys. Lett. A 20(35), 2723–2734 (2005). https://doi.org/10.1142/s0217732305018104

    Article  ADS  Google Scholar 

  26. Jüttner, F.: Das maxwellsche gesetz der geschwindigkeitsverteilung in der relativtheorie. Ann. Phys. 339(5), 856–882 (1911). https://doi.org/10.1002/andp.19113390503

    Article  Google Scholar 

  27. Hakim, R., Sivak, H.D.: Relativistic statistical mechanics, a brief overview. AIP Conf. Proc. 841(1), 63–99 (2006). https://doi.org/10.1063/1.2218169

    Article  ADS  MathSciNet  Google Scholar 

  28. Israel, W.: Relativistic kinetic theory of a simple gas. J. Math. Phys. 4(9), 1163–1181 (2004). https://doi.org/10.1063/1.1704047

    Article  ADS  MathSciNet  Google Scholar 

  29. Abellan, J., Navarro, A., Alvarez, E.: Thermodynamics and cosmology. (Relativistic gas expansion). J. Phys. A 10(7), 129–130 (1977). https://doi.org/10.1088/0305-4470/10/7/001

    Article  ADS  Google Scholar 

  30. Schucking, E.L., Spiegel, E.A.: Thermodynamics and cosmology. Comments Astrophys. Space Phys. 2, 121 (1970)

    ADS  CAS  Google Scholar 

  31. Stewart, J.M., MacCallum, M.A.H., Sciama, D.W.: Thermodynamics and cosmology. Comments Astrophys. Space Phys. 2, 206 (1970)

    ADS  CAS  Google Scholar 

  32. Du, Y., Huang, F., Li, H.-L., Li, Y.-Z., Yu, J.-H.: Revisiting dark matter freeze-in and freeze-out through phase-space distribution. J. Cosmol. Astroparticle Phys. 2022(04), 012 (2022). https://doi.org/10.1088/1475-7516/2022/04/012

    Article  MathSciNet  Google Scholar 

  33. Šafránek, D., Aguirre, A., Schindler, J., Deutsch, J.M.: A brief introduction to observational entropy. Found. Phys. 51(5), 101 (2021) 10.1007/s10701-021-00498-x arXiv:2008.04409

  34. Šafránek, D., Deutsch, J.M., Aguirre, A.: Quantum coarse-grained entropy and thermodynamics. Phys. Rev. A (2019). https://doi.org/10.1103/physreva.99.010101

    Article  Google Scholar 

  35. Buscemi, F., Schindler, J., Šafránek, D.: Observational entropy, coarse-grained states, and the Petz recovery map: information-theoretic properties and bounds. New J. Phys. 25(5), 053002 (2023) https://doi.org/10.1088/1367-2630/accd11arXiv:2209.03803

  36. Gibbons, G.W., Hawking, S.W., Stewart, J.M.: A natural measure on the set of all universes. Nucl. Phys. B 281, 736 (1987). https://doi.org/10.1016/0550-3213(87)90425-1

    Article  ADS  MathSciNet  Google Scholar 

  37. Gibbons, G.W., Turok, N.: Measure problem in cosmology. Phys. Rev. D 77(6) (2008) https://doi.org/10.1103/physrevd.77.063516

  38. Schiffrin, J.S., Wald, R.M.: Measure and probability in cosmology. Phys. Rev. D (2012). https://doi.org/10.1103/physrevd.86.023521

    Article  Google Scholar 

  39. Sloan, D.: Scalar fields and the FLRW singularity. Class. Quant. Gravity 36(23), 235004 (2019). https://doi.org/10.1088/1361-6382/ab4eb4

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. Remmen, G.N., Carroll, S.M.: Attractor solutions in scalar-field cosmology. Phys. Rev. D 88, 083518 (2013) https://doi.org/10.1103/PhysRevD.88.083518arXiv:1309.2611

  41. Corichi, A., Sloan, D.: Inflationary attractors and their measures. Class. Quant. Gravity 31(6), 062001 (2014). https://doi.org/10.1088/0264-9381/31/6/062001

    Article  ADS  MathSciNet  Google Scholar 

  42. Layzer, D.: On the significance of newtonian cosmology. Astron. J. 59, pp. 268-270 (1954) 59, 268–270 (1954) https://doi.org/10.1086/107226

Download references

Acknowledgements

This research was supported by the Foundational Questions Institute (FQXi.org) of which AA is Associate Director, and the Faggin Presidential Chair Fund. The authors would like to express deep thanks to David Sloan, Joshua Deutsch, Joey Schindler, and Marcell Howard for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Scharnhorst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Carlo Rovelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Model Lagrangian

The proposed \(\text {model}\) (\(N=1\) for simplicity; \(N\ne 1\) follows trivially) is derived from the Einstein-Hilbert and geodesic actions as follows:Footnote 5

$$\begin{aligned} S=S_{EH} + S_{Geo}= \int d^4x \sqrt{-g} R -m\int d\tau \sqrt{g_{\mu \nu }\dot{x}^\mu \dot{x}^\nu }, \end{aligned}$$
(A1)

where the dot denotes \(\frac{d}{d\tau }.\) Choose coordinates such that \(\tau =t\) and insert the \(\text {FLRW}\) metric \(ds^2={\mathcal {N}}^2dt^2-a^2(t)\Big ((1-kr^2)^{-1}dr^2+r^2(d\theta ^2 +\sin ^2\theta \;{\varphi }^2)\Big )\).

Then,

$$\begin{aligned} \begin{aligned} S&=V\int dt \,{\mathcal {N}}a^3 \left( \frac{6}{16\pi G} \left( \frac{\ddot{a}}{a{\mathcal {N}}^2} + \frac{{\dot{a}}^2}{a^2{\mathcal {N}}^2}+\frac{k}{a^2}\right) -2\Lambda \right) \\ &\quad -m\int dt \sqrt{{\mathcal {N}}^2 - a^2 \left( \frac{|\dot{\varvec{r}}|^2}{1-k{|{\varvec{r}}|}^2}+r^2 {\dot{\theta }} ^2 + r^2 \sin ^2 \theta {\dot{\phi }} ^2\right) }, \end{aligned} \end{aligned}$$
(A2)

indicating

$$\begin{aligned} \begin{aligned} L&=V\frac{1}{8\pi G}\left( \frac{3\ddot{a} a^2}{{\mathcal {N}}} + \frac{{3\dot{a}}^2a}{{\mathcal {N}}}+3ka{\mathcal {N}}-\Lambda a^3{\mathcal {N}}\right) \\ &\quad -m \sqrt{{\mathcal {N}}^2 - a^2\left( \frac{|\dot{{\varvec{r}}}|^2}{1-k{|{\varvec{r}}|}^2}+r^2 {\dot{\theta }} ^2 + r^2 \sin ^2 \theta {\dot{\phi }} ^2\right) }. \end{aligned} \end{aligned}$$
(A3)

Now, we want to get rid of the \(\ddot{a}\), so we realize that \(\frac{d}{dt} (a^2 \dot{a})= 2a{\dot{a}}^2 + a^2 \ddot{a}\). So, \(a^2 \ddot{a}= \frac{d}{dt} (a^2 \dot{a})-2a{\dot{a}}^2\). We can insert this and gauge away the total time derivative, which is a boundary term on the time integration, to arrive at

$$\begin{aligned} \begin{aligned}&L=V\frac{1}{8\pi G}\left( -\frac{{3{\dot{a}}^2}{a}}{{\mathcal {N}}}+{3k}{a}{\mathcal {N}}+\Lambda a^3{\mathcal {N}}\right) \\ {}-m&\sqrt{{\mathcal {N}}^2 - a^2\left( \frac{|\dot{{\varvec{r}}}|^2}{1-k{|{\varvec{r}}|}^2}+r^2 {\dot{\theta }} ^2 + r^2 \sin ^2 \theta {\dot{\phi }} ^2\right) }. \end{aligned} \end{aligned}$$
(A4)

The Hamiltonian is obtained via a Legendre transformation, and in the discussion of the it and its equations of motion, we have set the comoving volume V to be 1 for simplicity (Fig. 11).

Fig. 11
figure 11

Comparison between the central potential (top) and simulated potential in 2 dimensions, Eq. (12) for \(\alpha =4\) and \(a=1\). Both are periodic on square intervals, but the simulated potential is also smooth at the boundary, leading to continuity of forces

Appendix B: Mechanical Equation of State

To compare the thermodynamic equation of state with the mechanical equations of motion, consider the case with negligible interactions:

$$\begin{aligned} \rho = \frac{1}{a^3}\left( \sum _i\sqrt{m_i^2+\frac{|\varvec{p}_i|^2}{a^2}}\right) \end{aligned}$$
(B5)
$$\begin{aligned} P= \frac{1}{3}\left( \frac{1}{a^3}\sum _i \frac{|\varvec{p}_i|^2/a^2}{\sqrt{m_i^2+\frac{|{\varvec{p}}_i|^2}{a^2}}} \right) . \end{aligned}$$
(B6)

In the HR limit, \(\frac{|{\varvec{p}}|/a}{m}\gg 1,\) so

$$\begin{aligned} \rho \sim \sum \frac{1}{a^3}\frac{|{\varvec{p}}|}{a}\sim \sum \frac{|{\varvec{p}}|}{a^4} \end{aligned}$$
(B7)
$$\begin{aligned} P \sim \sum \frac{1}{3}\left( \frac{|\varvec{p}|^2}{a^5}\frac{a}{|{\varvec{p}}|} \right) \sim \sum \frac{1}{3}\frac{|{\varvec{p}}|}{a^4}. \end{aligned}$$
(B8)

The equation of state is \(P=w \rho ,\) indicating correctly that \(w=1/3\). In the NR limit, \(\frac{|{\varvec{p}}|/a}{m}\ll 1,\) so to first order,

$$\begin{aligned} \rho \sim \sum \frac{m}{a^3} \end{aligned}$$
(B9)

and \(P \ll 1\), indicating that \(w \sim 0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharnhorst, J., Aguirre, A. Modeling the Past Hypothesis: A Mechanical Cosmology. Found Phys 54, 8 (2024). https://doi.org/10.1007/s10701-023-00745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00745-3

Keywords

Navigation