Skip to main content
Log in

Relaxation to Quantum Equilibrium and the Born Rule in Nelson’s Stochastic Dynamics

  • Research
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Nelson’s stochastic quantum mechanics provides an ideal arena to test how the Born rule is established from an initial probability distribution that is not identical to the square modulus of the wavefunction. Here, we investigate numerically this problem for three relevant cases: a double-slit interference setup, a harmonic oscillator, and a quantum particle in a uniform gravitational field. For all cases, Nelson’s stochastic trajectories are initially localized at a definite position, thereby violating the Born rule. For the double slit and harmonic oscillator, typical quantum phenomena, such as interferences, always occur well after the establishment of the Born rule. In contrast, for the case of quantum particles free-falling in the gravity field of the Earth, an interference pattern is observed before the completion of the quantum relaxation. This finding may pave the way to experiments able to discriminate standard quantum mechanics, where the Born rule is always satisfied, from Nelson’s theory, for which an early subquantum dynamics may be present before full quantum relaxation has occurred. Although the mechanism through which a quantum particle might violate the Born rule remains unknown to date, we speculate that this may occur during fundamental processes, such as beta decay or particle-antiparticle pair production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. It is possible to formulate QM in terms of ordinary probabilities, provided that these are allowed to take negative values (see, for instance, Ref. [1] and references therein). This is another manifestation of the weirdness of quantum theory.

  2. Strictly speaking, actual ensembles in experiments only have a finite number of particles N, so that these theories always violate the Born rule. Here, we mean that the latter may be violated even in the limit \(N \rightarrow \infty\).

  3. For a definition of typicality in statistical mechanics, see [10, 11], and in the Bohm-de Broglie theory, see [12, 13].

  4. Indeed, a Taylor expansion of Eq. (14) near \(t=0\) yields: \(L_\textrm{X}(t) \simeq L_\textrm{X}(0)\,(1-\alpha _2 \alpha _3 t)\).

  5. The footnote reads as [2]: Anmerkung bei der Korrektur: Genauere Uberlegung zeigt, daß die Wahrscheinlichkeit dem Quadrat der \(\Psi\) proportional ist. (Note added in proofs: More careful consideration shows that the probability is proportional to the square of \(\Psi\)).

References

  1. Manfredi, Giovanni: Logical entropy and negative probabilities in quantum mechanics. 4open 5, 8 (2022). https://doi.org/10.1051/fopen/2022004

    Article  Google Scholar 

  2. Born, M.: Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 37, 863–867 (1926). https://doi.org/10.1007/BF01397477

    Article  ADS  MATH  Google Scholar 

  3. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  ADS  MATH  Google Scholar 

  4. Bell, J.S., Bell, J.S.: Speakable and unspeakable in quantum mechanics: Collected Papers on quantum Philosophy. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Styer, D.F., Balkin, M.S., Becker, K.M., Burns, M.R., Dudley, C.E., Forth, S.T., Gaumer, J.S., Kramer, M.A., Oertel, D.C., Park, L.H., Rinkoski, M.T., Smith, C.T., Wotherspoon, T.D.: Nine formulations of quantum mechanics. Am. J. Phys. 70(3), 288–297 (2002). https://doi.org/10.1119/1.1445404

    Article  ADS  MathSciNet  Google Scholar 

  6. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden’’ variables. Phys. Rev. 85, 166–179 (1952). https://doi.org/10.1103/PhysRev.85.166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. I. Phys. Lett. A 156(1), 5–11 (1991). https://doi.org/10.1016/0375-9601(91)90116-P

    Article  ADS  MathSciNet  Google Scholar 

  8. Valentini, A.: Inflationary cosmology as a probe of primordial quantum mechanics. Phys. Rev. D 82, 063513 (2010). https://doi.org/10.1103/PhysRevD.82.063513

    Article  ADS  Google Scholar 

  9. Underwood, N.G., Valentini, A.: Quantum field theory of relic nonequilibrium systems. Phys. Rev. D 92, 063531 (2015). https://doi.org/10.1103/PhysRevD.92.063531

    Article  ADS  MathSciNet  Google Scholar 

  10. Lebowitz, J.L.: Boltzmann’s entropy and time’s arrow. Phys. Today 46, 32–38 (1993)

    Article  Google Scholar 

  11. Lebowitz, J.L.: Microscopic origins of irreversible macroscopic behavior. Phys. A: Stat. Mech. Appl. 263(1), 516–527 (1999). https://doi.org/10.1016/S0378-4371(98)00514-7

    Article  MathSciNet  Google Scholar 

  12. Dürr, D., Goldstein, S., Zanghi, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dürr, D., Struyve, W.: In: Allori, V., Bassi, A., Dürr, D., Zanghi, N.: (eds.) Typicality in the Foundations of Statistical Physics and Born’s Rule, pp. 35–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-46777-7_3

  14. Valentini, A., Westman, H.: Dynamical origin of quantum probabilities. Proc. R. Soc. A: Math., Phys. Eng. Sci. 461(2053), 253–272 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1079–1085 (1966). https://doi.org/10.1103/PhysRev.150.1079

    Article  ADS  Google Scholar 

  16. Bacciagaluppi, G.: Nelsonian mechanics revisited. Found. Phys. Lett. 12, 1–16 (1999)

    Article  MathSciNet  Google Scholar 

  17. Beyer, M., Paul, W.: On the stochastic mechanics foundation of quantum mechanics. Universe (2021). https://doi.org/10.3390/universe7060166

    Article  Google Scholar 

  18. Nesvizhevsky, V.V., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002). https://doi.org/10.1038/415297a

    Article  ADS  Google Scholar 

  19. Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 172(3), 93–122 (1989). https://doi.org/10.1016/0370-1573(89)90160-9

    Article  ADS  MathSciNet  Google Scholar 

  20. Peruzzi, G., Rimini, A.: Quantum measurement in a family of hidden-variable theories. Found. Phys. Lett. 9(6), 505–519 (1996)

    Article  MathSciNet  Google Scholar 

  21. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954). https://doi.org/10.1103/PhysRev.96.208

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Petroni, N.C., Guerra, F.: Quantum mechanical states as attractors for Nelson processes. Found. Phys. 25(2), 297–315 (1995). https://doi.org/10.1007/BF02055209

    Article  ADS  MathSciNet  Google Scholar 

  23. Hatifi, M., Willox, R., Colin, S., Durt, T.: Bouncing oil droplets, de Broglie’s quantum thermostat, and convergence to equilibrium. Entropy 20(10), 1–32 (2018). https://doi.org/10.3390/e20100780

    Article  Google Scholar 

  24. Couder, Y., Protiere, S., Fort, E., Boudaoud, A.: Walking and orbiting droplets. Nature 437(7056), 208–208 (2005)

    Article  ADS  Google Scholar 

  25. Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101 (2006). https://doi.org/10.1103/PhysRevLett.97.154101

    Article  ADS  Google Scholar 

  26. Greenside, H., Helfand, E.: Numerical integration of stochastic differential equations-ii. Bell Syst. Tech. J. 60(8), 1927–1940 (1981)

    Article  MATH  Google Scholar 

  27. Bayram, M., Partal, T., Orucova Buyukoz, G.: Numerical methods for simulation of stochastic differential equations. Adv. Differ. Equ. 2018(1), 1–10 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. McClendon, M., Rabitz, H.: Numerical simulations in stochastic mechanics. Phys. Rev. A 37, 3479–3492 (1988). https://doi.org/10.1103/PhysRevA.37.3479

    Article  ADS  MathSciNet  Google Scholar 

  29. Joyce, J.M.: In: Lovric, M. (ed.) Kullback-Leibler Divergence, pp. 720–722. Springer, Berlin, (2011). https://doi.org/10.1007/978-3-642-04898-2_327

  30. Pleinert, M., von Zanthier, J., Lutz, E.: Many-particle interference to test Born’s rule. Phys. Rev. Res. 2, 012051 (2020). https://doi.org/10.1103/PhysRevResearch.2.012051

    Article  Google Scholar 

  31. Cotter, J.P., Brand, C., Knobloch, C., Lilach, Y., Cheshnovsky, O., Arndt, M.: In search of multipath interference using large molecules. Sci. Adv. 3(8), 1602478 (2017). https://doi.org/10.1126/sciadv.1602478

    Article  ADS  Google Scholar 

  32. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940). https://doi.org/10.1016/S0031-8914(40)90098-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Moyal, J.E.: Stochastic processes and statistical physics. J. R. Stat. Soc. 11(2), 150–210 (1949)

    MathSciNet  MATH  Google Scholar 

  34. Polyanin, A., Zaitsev, V.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, New York (2002)

    MATH  Google Scholar 

  35. Tsuru, H.: Wave packet motion in harmonic potential. J. Phys. Soc. Japan 60, 3657–3663 (1991). https://doi.org/10.1143/JPSJ.60.3657

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhang, L., Guan, Y.: Variance Estimation over Sliding Windows. PODS ’07, pp. 225–232. Association for Computing Machinery, New York, (2007). https://doi.org/10.1145/1265530.1265562

  37. The ALPHA collaboration, Charman, A.E.: Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nature Comm 4: 1785 (2013)

  38. Perez, P., Sacquin, Y.: The GBAR experiment: gravitational behaviour of antihydrogen at rest. Class. Quantum Grav. 29(18), 184008 (2012)

    Article  ADS  Google Scholar 

  39. Dufour, G., Gérardin, A., Guérout, R., Lambrecht, A., Nesvizhevsky, V.V., Reynaud, S., Voronin, A.Y.: Quantum reflection of antihydrogen from the Casimir potential above matter slabs. Phys. Rev. A 87, 012901 (2013). https://doi.org/10.1103/PhysRevA.87.012901

    Article  ADS  Google Scholar 

  40. Dufour, G.: Quantum reflection from the Casimir-Polder potential. Theses, Université Pierre et Marie Curie - Paris VI (2015). https://tel.archives-ouvertes.fr/tel-01242290

  41. Crepin, P.-P.: Quantum reflection of a cold antihydrogen wave packet. Theses, Sorbonne Université (2019). https://tel.archives-ouvertes.fr/tel-03141367

  42. Rousselle, O.: Statistical analysis of classical and quantum measurements of free fall acceleration of antihydrogen for the GBAR experiment. Theses, Sorbonne Université (2022). https://tel.archives-ouvertes.fr/tel-03725484

  43. Jenke, T., Geltenbort, P., Lemmel, H., Abele, H.: Realization of a gravity-resonance-spectroscopy technique. Nature Phys. 7, 468–472 (2011)

    Article  ADS  Google Scholar 

  44. Jenke, T., Cronenberg, G., Burgdörfer, J., Chizhova, L.A., Geltenbort, P., Ivanov, A.N., Lauer, T., Lins, T., Rotter, S., Saul, H., Schmidt, U., Abele, H.: Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys. Rev. Lett. 112, 151105 (2014). https://doi.org/10.1103/PhysRevLett.112.151105

    Article  ADS  Google Scholar 

  45. Killian, C., Burkley, Z., Blumer, P., Crivelli, P., Gustafsson, F.P., Hanski, O., Nanda, A., Nez, F., Nesvizhevsky, V., Reynaud, S., et al.: Grasian: towards the first demonstration of gravitational quantum states of atoms with a cryogenic hydrogen beam. Eur. Phys. J. D 77(3), 50 (2023)

    Article  ADS  Google Scholar 

  46. Suda, M., Faber, M., Bosina, J., Jenke, T., Käding, C., Micko, J., Pitschmann, M., Abele, H.: Spectra of neutron wave functions in Earth’s gravitational field. Zeitschrift für Naturforschung A 77(9), 875–898 (2022). https://doi.org/10.1515/zna-2022-0050

    Article  ADS  Google Scholar 

  47. Vallé, O., Soares, M.: Airy Functions and Applications to Physics. Imperial College Press, London (2004)

    Book  Google Scholar 

  48. Crépin, P.-P., Christen, C., Guérout, R., Nesvizhevsky, V.V., Voronin, A.Y., Reynaud, S.: Quantum interference test of the equivalence principle on antihydrogen. Phys. Rev. A 99, 042119 (2019). https://doi.org/10.1103/PhysRevA.99.042119

    Article  ADS  Google Scholar 

  49. Valentini, A.: In: Cushing, J.T., Fine, A., Goldstein, S. (eds.) Pilot-Wave Theory of Fields, Gravitation and Cosmology, pp. 45–66. Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-015-8715-0_3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Manfredi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Derivation of the \(c_n\) Coefficients

Appendix A Derivation of the \(c_n\) Coefficients

We sketch here the procedure used in Ref. [42] to decompose the wavefunction

$$\begin{aligned} \Psi (x,0) = \frac{1}{(2\pi \zeta ^2)^{1/4}} \, \exp \left[ -\frac{(x-h)^2}{4\zeta ^2} \right] \end{aligned}$$

on the basis of the eigenfunctions of the Hamiltonian (29):

$$\begin{aligned} \chi _n(x) = \Theta (x)\frac{\textrm{Ai}(x-E_n)}{\textrm{Ai}'(-E_n)}. \end{aligned}$$

Writing \(\Psi (x,0) = \sum _n c_n \chi _n(x)\), the problem is reduced to finding an expression of the coefficients

$$\begin{aligned} c_n = \langle \chi _n\rangle {\psi } = \frac{1}{(2\pi \zeta ^2)^{\frac{1}{4}}}\int _0^{\infty }\textrm{d}x~\chi _n^*(x) \, \textrm{e}^{-\frac{(x-h)^2}{4\zeta ^2}}, \end{aligned}$$

where the asterisk denotes complex conjugation.

When the width \(\zeta\) of the Gaussian is small enough with respect to h, the lower bound of the integral can be replaced by \(-\infty\) and the \(c_n\) have an analytical expression:

$$\begin{aligned} c_n&= \frac{1}{(2\pi \zeta ^2)^{\frac{1}{4}}\textrm{Ai}'(-E_n)}\int _{-\infty }^{+\infty }\textrm{d}x ~ \textrm{Ai}(x-E_n)\textrm{e}^{-\frac{(x-h)^2}{4\zeta ^2}}\\ \nonumber&= \frac{2\zeta }{(2\pi \zeta ^2)^{\frac{1}{4}}\textrm{Ai}'(-E_n)} \int _{-\infty }^{+\infty }\textrm{d}u ~ \textrm{Ai}(2\zeta u +h -E_n)\textrm{e}^{-u^2}\\&= \frac{(8\pi \zeta ^2)^{\frac{1}{4}}}{\textrm{Ai}'(-E_n)}\textrm{Ai}(h - E_n +\zeta ^4) \exp {\zeta ^2\left( h-E_n+\frac{2}{3}\zeta ^4\right) } , \end{aligned}$$

which is just the expression of Eq. (33). Note that we used the following identity:

$$\begin{aligned} \int _{-\infty }^{+\infty } \textrm{d}u~ \textrm{e}^{-u^2}\textrm{Ai}(2au+b) = \sqrt{\pi }\textrm{e}^{a^2b+\frac{2}{3}a^6}\textrm{Ai}(b+a^4). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardel, V., Hervieux, PA. & Manfredi, G. Relaxation to Quantum Equilibrium and the Born Rule in Nelson’s Stochastic Dynamics. Found Phys 53, 89 (2023). https://doi.org/10.1007/s10701-023-00730-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00730-w

Keywords

Navigation