Skip to main content
Log in

Relational Space-Time and de Broglie Waves

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Relative motion of particles is examined in the context of relational space-time. It is shown that de Broglie waves may be derived as a representation of the coordinate maps between the rest-frames of these particles. Energy and momentum are not absolute characteristics of these particles, they are understood as parameters of the coordinate maps between their rest-frames. It is also demonstrated the position of a particle is not an absolute, it is contingent on the frame of reference used to observe the particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. de Broglie waves as defined by Dirac [38] p. 120.

  2. In the sense used by Minkowski, Cologne (1908) [45].

  3. This was alluded to by Kastner in footnote 3 of [24].

References

  1. Barbour, J.B.: Relational concepts of space and time. Brit. J. Philos. Sci. 33, 251–274 (1982)

    MathSciNet  Google Scholar 

  2. Leibniz, G.W., Clarke, S.: Leibniz and Clarke: Correspondence. Hackett Publishing, Indianapolis (2000)

    Google Scholar 

  3. Barbour, J.B.: Relative-distance Machian theories. Nature 249, 328–329 (1974)

    ADS  Google Scholar 

  4. Barbour, J.B., Bertotti, B.: Gravity and inertia in a Machian framework. Nuovo Ciment. B 38, 1–27 (1977)

    ADS  Google Scholar 

  5. Barbour, J.B., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lon. Ser. A. 382, 295–306 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Mundy, B.: Relational theories of Euclidean space and Minkowski spacetime. Philos. Sci. 50, 205–226 (1983)

    MathSciNet  Google Scholar 

  7. Sklar, L.: Space, Time and Spacetime. University of California Press, Oakland (1974)

    Google Scholar 

  8. Huggett, N., Hoefer, C., Read, J.: Absolute and Relational Space and Motion: Post-Newtonian Theories. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2023)

    Google Scholar 

  9. Huggett, N.: Space From Zeno to Einstein: Classic Readings with a Contemporary Commentary. MIT Press, Cambridge (1999)

    Google Scholar 

  10. Mercati, F.: Shape Dynamics: Relativity and Relationalism. Oxford University Press, Oxford (2018)

    MATH  Google Scholar 

  11. Einstein, A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik 322, 891–921 (1905)

    ADS  MATH  Google Scholar 

  12. de Broglie, L.: Recherches sur la théorie des quanta. Ann. Phys. 10, 22–128 (1925)

    MATH  Google Scholar 

  13. de Broglie, L.: An Introduction to the Study of Wave Mechanics. Methuen & Co., London (1930)

    MATH  Google Scholar 

  14. Catillon, P., Cue, N., Gaillard, M.J., Genre, R., Gouanère, M., Kirsch, R.G., Poizat, J.C., Remillieux, J., Roussel, L., Spighel, M.: A search for the de Broglie particle internal clock by means of electron channeling. Found. Phys. 38, 659–664 (2008)

    ADS  Google Scholar 

  15. Gouanère, M., Spighel, M., Cue, N., Gaillard, M.J., Genre, R., Kirsch, R., Poizat, J.C., Remillieux, J., Catillon, P., Roussel, L.: Experimental observation compatible with the particle internal clock. In Annales de la Fondation Louis de Broglie 30, 109–114 (2005)

    Google Scholar 

  16. Lochak, G.: de Broglie’s initial conception of de Broglie waves. In: Diner, S., Fargue, D., Lochak, G., Selleri, F. (eds.) The Wave-Particle Dualism: A Tribute to Louis de Broglie on his 90th Birthday, pp. 1–25. Springer, Dordrecht (1984)

    Google Scholar 

  17. MacKinnon, E.. De.: Broglie’s thesis: A critical retrospective. Am. J. Phys. 44, 1047–1055 (1976)

    ADS  Google Scholar 

  18. Davisson, C., Germer, L.H.: The scattering of electrons by a single crystal of nickel. Nature 119, 558–560 (1927)

    ADS  Google Scholar 

  19. Thomson, G.P., Reid, A.: Diffraction of cathode rays by a thin film. Nature 119, 890–890 (1927)

    ADS  Google Scholar 

  20. Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., Van der Zouw, G., Zeilinger, A.: Wave-particle duality of \(\rm C _{60}\) molecules. Nature 401, 680–682 (1999)

    ADS  Google Scholar 

  21. Schmidt, H.T., Fischer, D., Berenyi, Z., Cocke, C.L., Gudmundsson, M., Haag, N., Johansson, H.A.B., Källberg, A., Levin, S.B., Reinhed, P., et al.: Evidence of wave-particle duality for single fast hydrogen atoms. Phys. Rev. Lett. 101, 083201 (2008)

    ADS  Google Scholar 

  22. Shayeghi, A., Rieser, P., Richter, G., Sezer, U., Rodewald, J.H., Geyer, P., Martinez, T.J., Arndt, M.: Matter-wave interference of a native polypeptide. Nat. Commun. 11, 1–8 (2020)

    Google Scholar 

  23. Synge, J.L.: Geometrical Mechanics and de Broglie Waves. Cambridge University Press, Cambridg (1954)

    MATH  Google Scholar 

  24. Kastner, R.E.: de Broglie waves as the “bridge of becoming” between quantum theory and relativity. Found. Sci. 18, 1–9 (2013)

    MathSciNet  Google Scholar 

  25. Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University, New York, Belfer Graduate School of Science (1964)

    Google Scholar 

  26. Goldstein, H., Poole, C., Safko, J.: Classical mechanics, 3rd edn. Addison-Wesley, San Francisco (2002)

    MATH  Google Scholar 

  27. Hand, L.N., Finch, J.D.: Analytical Mechanics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  28. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  29. Euler, L.P.: Du mouvement de rotation des corps solides autour d’un axe variable. Mém. L’Acad. Sci. Berl 14, 154–193 (1765)

    Google Scholar 

  30. Kolev, Boris: Lie groups and mechanics: An introduction. J. Nonlinear Math. Phys. 11, 480–498 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16, 319–361 (1966)

    MathSciNet  MATH  Google Scholar 

  32. Constantin, A., Kolev, B.: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A 35, R51–R79 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Escher, J., Henry, D., Kolev, B., Lyons, T.: Two-component equations modelling water waves with constant vorticity. Ann. Mat. Pura Appl. 195, 249–271 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Escher, J., Ivanov, R., Kolev, B.: Euler equations on a semi-direct product of the diffeomorphisms group by itself. J. Geom. Mech. 3, 313–322 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Motz, L., Selzer, A.: Quantum mechanics and the relativistic Hamilton-Jacobi equation. Phys. Rev. 133, B1622 (1964)

    ADS  MathSciNet  Google Scholar 

  36. Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  37. Nikolić, H.: Quantum mechanics: myths and facts. Found. Phys 36, 1562–1611 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (2007)

    Google Scholar 

  39. Greiner, W.: Relativistic quantum mechanics. In: Wave Equations. Springer, Berlin (2000)

    MATH  Google Scholar 

  40. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  41. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Rovelli, C.: Space is blue and birds fly through it. Philos. Trans. Royal Soc. A 376, 20170312 (2018)

    ADS  Google Scholar 

  43. Loveridge, L., Miyadera, T., Busch, P.: Symmetry, reference frames, and relational quantities in quantum mechanics. Found. Phys. 48, 135–198 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Pauli, W., Weisskopf, V.: Über die quantisierung der skalaren relativistischen. Helv. Phys. Acta. 7, 708–731 (1934)

    MATH  Google Scholar 

  45. Minkowski, H.: Space and time. In: Minkowski’s Papers on Relativity, pp. 39–54. Minkowski Institute Press, Montreal (2022)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the referees for several helpful comments and suggestions.

Funding

No funding was obtained for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All work has been completed by TL.

Corresponding author

Correspondence to Tony Lyons.

Ethics declarations

Conflicts of interest

The author declares there are no conflicts of interest, financial or otherwise, related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 1198.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, T. Relational Space-Time and de Broglie Waves. Found Phys 53, 70 (2023). https://doi.org/10.1007/s10701-023-00715-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00715-9

Navigation