Skip to main content
Log in

Quantum Prey–Predator Dynamics: A Gaussian Ensemble Analysis

  • Brief Report
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum frameworks for modeling competitive ecological systems and self-organizing structures have been investigated under multiple perspectives yielded by quantum mechanics. These comprise the description of the phase-space prey–predator competition dynamics in the framework of the Weyl–Wigner quantum mechanics. In this case, from the classical dynamics described by the Lotka–Volterra (LV) Hamiltonian, quantum states convoluted by statistical gaussian ensembles can be analytically evaluated. Quantum modifications on the patterns of equilibrium and stability of the prey–predator dynamics can then be identified. These include quantum distortions over the equilibrium point drivers of the LV dynamics which are quantified through the Wigner current fluxes obtained from an onset Hamiltonian background. In addition, for gaussian ensembles highly localized around the equilibrium point, stability properties are shown to be affected by emergent topological quantum domains which, in some cases, could lead either to extinction and revival scenarios or to the perpetual coexistence of both prey and predator agents identified as quantum observables in microscopic systems. Conclusively, quantum and gaussian statistical driving parameters are shown to affect the stability criteria and the time evolution pattern for such microbiological-like communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Akin to the statistical QM, the WW phase-space framework recovers the QM probabilistic interpretation through its marginal distributions that correspond to position and momentum probability densities given by

    $$\begin{aligned} \vert \psi _x(x)\vert ^2 = \int ^{+\infty }_{-\infty } dx\,{\mathcal {W}}(x,\, k) \leftrightarrow \vert \psi _k(k)\vert ^2 = \int ^{+\infty }_{-\infty } dk\,{\mathcal {W}}(x,\, k), \quad \text{ with }\quad \psi _x(x) = \frac{1}{2\pi }\int ^{+\infty }_{-\infty } dk\,\exp {\left[ -i \, k \,x\right] }\, \psi _k(k), \end{aligned}$$
    (4)

    which, at 1-dim, are straightforwardly encompassed by the Heisenberg–Weyl algebra in the form of a position-momentum non-commutative relation, \([x,\,k] = i\).

  2. Related to the powers of \(\hbar\), \(\hbar ^{2\eta }\), suppressed from the dimensionless notation.

  3. As previously pointed out, a similar analysis can be carried out for the thermodynamic statistical ensemble interpretation up to \({\mathcal {O}}(\hbar ^2)\) in the series expansion, Eqs. (7) and (8).

  4. After noticing that

    $$\begin{aligned} \sum _{\eta =0}^{\infty }{{h}}_{2\eta +1} (\alpha \chi )\frac{s^{2\eta +1}}{(2\eta +1)!} = \sinh (2s\,\alpha \chi ) \exp \big [-s^2\big ]. \end{aligned}$$
    (15)
  5. In terms of gaussian error functions, \({{Erf}}[\dots ]\).

  6. In fact, as it can be numerically verified for any gaussian configuration with \(\alpha < 1\).

References

  1. Leme de Mattos, S.H.V., Piqueira, J.R.C., Vasconcelos-Neto, J., Orsatti, F.M.: Measuring Q-bits in three trophic level systems. Ecol. Model. 200, 183 (2007)

    Article  Google Scholar 

  2. Del Giudice, E., Pulselli, R.M., Tiezzi, E.: Thermodynamics of irreversible processes and quantum field theory: an interplay for the understanding of ecosystem dynamics. Ecol. Model. 220, 1874 (2009)

    Article  Google Scholar 

  3. Kirwan, A.D., Jr.: Quantum and ecosystem entropies. Entropy 10, 58 (2008)

    Article  ADS  Google Scholar 

  4. Jorgensen, S.E., Tiezzi, E.: Preface to workshop on? Emergence of novelties?, 9–16 October 2008, Pacina, Siena, Italy. Ecol. Modell. 220, 1855 (2009)

    Article  Google Scholar 

  5. Bernardini, A.E., Bertolami, O.: Noncommutative phase-space Lotka–Volterra dynamics: the quantum analog. Phys. Rev. E 106, 024202 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bernardini, A.E., Bertolami, O.: Generalized phase-space description of nonlinear Hamiltonian systems and Harper-like dynamics. Phys. Rev. A 105, 032207 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  7. Real, R., Márcia Barbosa, A., Bull, J.W.: Species distributions, quantum theory, and the enhancement of biodiversity measures. Syst. Biol. 66, 453 (2017)

    Google Scholar 

  8. Paula, D.P., et al.: Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics. Mol. Ecol. Resour. 15, 880 (2015)

    Article  Google Scholar 

  9. Fujii, T., Rondelez, T.: Predator–prey molecular ecosystems. ACS Nano 7, 27 (2013)

    Article  Google Scholar 

  10. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics. Oxford University Press, New York (1998)

    Book  Google Scholar 

  11. Ackermann, J., Wlotzka, B., McCaskill, J.S.: In vitro DNA-based predator prey system with oscillatory kinetics. Bull. Math. Biol. 60, 329 (1998)

    Article  MATH  Google Scholar 

  12. Wlotzka, B., McCaskill, J.S.: A molecular predator and its prey: coupled isothermal amplification of nucleic acids. Chem. Biol. 4, 25 (1997)

    Article  Google Scholar 

  13. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  14. Ballentine, L.E.: Quantum Mechanics: A Modern Development, p. 633. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  15. Case, W.B.: Wigner functions and Weyl transforms for pedestrians. Am. J. Phys. 76, 937 (2008)

    Article  ADS  Google Scholar 

  16. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins Co., Baltimore (1925)

    MATH  Google Scholar 

  17. Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. Lincei. Ser. VI 2, 31–113 (1926)

    MATH  Google Scholar 

  18. Parker, M., Kamenev, A.: Extinction in the Lotka–Volterra model. Phys. Rev. E 80, 021129 (2009)

    Article  ADS  Google Scholar 

  19. Tahara, T., et al.: Asymptotic stability of a modified Lotka–Volterra model with small immigrations. Sci. Rep. 8, 7029 (2018)

    Article  ADS  Google Scholar 

  20. Smith, N.R., Meerson, B.: Extinction of oscillating populations. Phys. Rev. E 93, 032109 (2016)

    Article  ADS  Google Scholar 

  21. Ma, Y.-A., Qian, H.: A thermodynamic theory of ecology: Helmholtz theorem for Lotka–Volterra equation, extended conservation law, and stochastic predator?prey dynamics. Proc. R. Soc. A 471, 20150456 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Vanselow, A., Wieczorek, S., Feudel, U.: When very slow is too fast-collapse of a predator–prey system. J. Theor. Biol. 479, 64 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kumar, M., Ji, B., Zengler, K., Nielsen, J.: Modelling approaches for studying the microbiome. Nat. Microbiol. 4, 1253 (2019)

    Article  Google Scholar 

  24. Butler, S., O’Dwyer, J.P.: Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018)

    Article  ADS  Google Scholar 

  25. Szabo, G., Czaran, T.: Phase transition in a spatial Lotka–Volterra model. Phys. Rev. E 63, 061904 (2001)

    Article  ADS  Google Scholar 

  26. Grasman, J., van Herwaarden, O.A.: Asymptotic Methods for the Fokker–Planck Equation and the Exit Problem in Applications. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  27. Allen, L.J.S.: An Introduction to Stochastic Processes with Applications to Biology, 2nd edn. Chapman & Hall-CRC, New York (2010)

    Book  Google Scholar 

  28. Bernardini, A.E.: Testing nonclassicality with exact Wigner currents for an anharmonic quantum system. Phys. Rev. A 98, 052128 (2018)

    Article  ADS  Google Scholar 

  29. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44(10), 36 (1991)

    Article  Google Scholar 

  30. Bernardini, A.E., Bertolami, O.: Non-classicality from the phase-space flow analysis of the Weyl–Wigner quantum mechanics. EPL 120, 20002 (2017)

    Article  ADS  Google Scholar 

  31. Bernardini, A.E., Bertolami, O.: Phase-space continuity equations for quantum decoherence, purity, von Neumann and Renyi entropies. J. Phys. Conf. Ser. 1275, 012032 (2019)

    Article  Google Scholar 

  32. Steuernagel, O., Kakofengitis, D., Ritter, G.: Wigner flow reveals topological order in quantum phase space dynamics. Phys. Rev. Lett. 110, 030401 (2013)

    Article  ADS  Google Scholar 

  33. Bernardini, A.E., Bertolami, O.: Distorted stability pattern and chaotic features for quantized prey-predator-like dynamics. Phys. Rev. E 107, 044201 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction. Phys. Rev. A 86, 012103 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of AEB is supported by the Brazilian Agencies FAPESP (Grant No. 2020/01976-5 and Grant No. 2023/00392-8, São Paulo Research Foundation (FAPESP)) and CNPq (Grant No. 301485/2022-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Bernardini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardini, A.E., Bertolami, O. Quantum Prey–Predator Dynamics: A Gaussian Ensemble Analysis. Found Phys 53, 63 (2023). https://doi.org/10.1007/s10701-023-00703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00703-z

Keywords

Navigation