Skip to main content
Log in

A New Organization of Quantum Theory Based on Quantum Probability

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum probability is used to provide a new organization of basic quantum theory in a logical, axiomatic way. The principal thesis is that there is one fundamental time evolution equation in quantum theory, and this is given by a new version of Born’s Rule, which now includes both consecutive and conditional probability as it must, since science is based on correlations. A major modification of one of the standard axioms of quantum theory allows the implementation of various mathematically distinct models (commonly called ‘pictures’) of them. A natural definition of isomorphism of models is presented next. For a given Hamiltonian the standard ‘pictures’ of quantum theory (e.g., Schrödinger, Heisenberg, interaction) are isomorphic models, whose probabilities are nonetheless model independent. The Schrödinger equation remains valid in one model of the axioms, even though it is no longer the fundamental equation of time evolution. All the usual calculations of standard, textbook quantum theory remain valid, but they are put in a new light. For example, the ‘collapse’ of the state is now viewed in the Schrödinger model as one step in a two step algorithm for calculating one conditional probability. In the isomorphic Heisenberg model, where states are constant in time, one has the same conditional probability given by the same formula. Also, entanglement is defined in a new, more general model independent way as an aspect of quantum probability without using ‘collapse’ or tensor products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The error that only Type I von Neumann algebras are relevant in quantum theory.

References

  1. Sontz, S.B.: An Introductory Path to Quantum Theory. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  2. Dirac, P.A.M.: Principles of Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1958)

    MATH  Google Scholar 

  3. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton Univ. Press (1955). (English translation of: Mathematische Grundlagen der Quantenmechanik. Springer (1932).)

  4. Sontz, S.B.: A New Approach to Quantum Theory, treatise to be submitted

  5. Russo, L.: The Forgotten Revolution. Springer, Berlin (2004)

    Book  Google Scholar 

  6. Isham, C.: Lectures on Quantum Theory: Mathematical and Structural Foundations. Imperial College Press, London (1995)

    Book  MATH  Google Scholar 

  7. Weidmann, J.: Linear Operators in Hilbert Spaces. Springer (1980). (English translation of: Lineare Operatoren in Hilberträumen, B.G. Teubner) (1976)

  8. Kolmogorov, A.N.: Foundations of the Theory of Probability, 2nd edn. Chelsea Pub. Co., (1956). (English translation of: Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, 1933.)

  9. Gudder, S.P.: Quantum Probability. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  10. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  11. Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Boston (1981)

    MATH  Google Scholar 

  12. Mackey, G.: The mathematical foundations of quantum mechanics. Synthese 42, 1–70 (1963)

    MathSciNet  Google Scholar 

  13. Born, M.: Zur Quantemmechanik der Stossvorgänge. Z. Phys. 37, 863–867 (1926)

    Article  ADS  MATH  Google Scholar 

  14. Iwai, T.: Geometry, Mechanics, and Control in Action for the Falling Cat. Springer, Berlin (2021)

    Book  MATH  Google Scholar 

  15. Kadison, R.V.: Fundamentals of the Theory of Operator Algebras, vol. I. Academic Press, Cambridge (1983)

    MATH  Google Scholar 

  16. Cassinelli, G., Zanghi, N.: Conditional probabilities in quantum mechanics. Nuovo Cimento 73(B), 237–245 (1983)

    Article  Google Scholar 

  17. Busch, P., et al.: Quantum Measurement. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  18. Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann. 63, 433 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  20. Lüders, G.: Über die Zustandsänderung durch den Messenprozess, Ann. Phys. (Liepzig) 8, 322–328 (1951). (English translation: Concerning the state-change due to the measurement process, Ann. Phys. (Liepzig) 15, 663–670 (2006).)

  21. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  22. Bohm, D.: A suggested interpretation of quantum theory in terms of ‘Hidden’ Variables, I and II. Phys. Rev. 85, 166–193 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Frohlich, J., Pizzo, A.: The time-evolution of states in quantum mechanics according to the ETH-approach. Commun. Math. Phys. 389, 1673–1715 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mermin, N.D.: The Ithaca interpretation of quantum mechanics. Pramana 51, 549–565 (1998)

    Article  ADS  Google Scholar 

  26. Mermin, N.D.: Copenhagen computation: how i learned to stop worrying and love Bohr. IBM Res. J. Res. Dev. 48, 53 (2004)

    Article  Google Scholar 

  27. Deutsch, D., Marletto, C.: Constructor theory of information. Proc. R. Soc. A 471, 20140540 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Moyal, J.E.: Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 45, 99–124 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank Micho Ɖurđevich for his valuable comments and encouraging interest. I am also grateful to an anonymous reviewer whose comments motivated me to clarify several matters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Bruce Sontz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sontz, S.B. A New Organization of Quantum Theory Based on Quantum Probability. Found Phys 53, 49 (2023). https://doi.org/10.1007/s10701-023-00691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00691-0

Keywords

Navigation