Skip to main content

A Tentative Completion of Quantum Mechanics

  • Chapter
  • First Online:
Physics and the Nature of Reality

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 215))

  • 219 Accesses

Abstract

We review a proposal of how to complete non-relativistic Quantum Mechanics to a physically meaningful, mathematically precise and logically coherent theory. This proposal has been dubbed ETH-Approach to Quantum Mechanics, “E” standing for “Events,” “T” for “Trees,” and “H” for “Histories.” The ETH-Approach supplies the last one of three pillars Quantum Mechanics can be constructed upon in such a way that its foundations are solid and stable. Two of these pillars are well known. The third one has been proposed quite recently; it implies a general non-linear stochastic law for the time-evolution of states of individual physical systems.

Dedicated to the memory of Detlef Dürr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We suspect, though, that our views of how to complete QM are likely to differ from what we think were his.

  2. 2.

    We have added a remark on Bohmian mechanics on request of one of the editors.

  3. 3.

    It really does not make much sense to present this approach to QM in a new way each time it has to be recalled, because people have chosen not to take notice of it.

  4. 4.

    i.e., a von Neumann algebra.

  5. 5.

    in the sense the late Rudolf Haag used this terminology; see [19].

  6. 6.

    In more technical jargon, \(\mathfrak {P}(\omega _t)\) generates the center of the centralizer \(\mathcal {C}(\omega _t)\) of \(\omega _t\).

References

  1. D. Dürr, S. Teufel, Bohmian Mechanics (Springer, Berlin and Heidelberg, 2009)

    Google Scholar 

  2. K. Kraus, States, Effects, and Operations, Lecture Notes in Physics, vol. 190. (Springer, Berlin, 1983)

    Google Scholar 

  3. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive semigroups of N-level systems. J. Math. Phys. 17(5), 821 (1976) G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Google Scholar 

  4. G. Lüders, Über die Zustandsänderung durch den Messprozess. Ann. Phys. (Leipzig) 443(5–8), 322–328 (1950)

    Article  ADS  Google Scholar 

  5. E.P. Wigner, Remarks on the mind-body question, in Symmetries and Reflections (Indiana University Press, Bloomington, 1967), pp. 171–184

    Google Scholar 

  6. J. Faupin, J. Fröhlich, B. Schubnel, On the probabilistic nature of quantum mechanics and the notion of closed systems. Ann. H. Poincaré 17, 689–731 (2016)

    Google Scholar 

  7. H.D. Everett III., Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  8. In: Interpretations of quantum mechanics, Wikipedia; see https://en.wikipedia.org/wiki/Interpretations{hyphen}of{hyphen}quantum{hyphen}mechanics

  9. R.B. Griffiths, Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1), 219–272 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Gell-Mann, J.B. Hartle, Classical equations for quantum systems. Phys. Rev. D 47(8), 3345–3382 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. G.C. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  12. G. ’tHooft, The Cellular Automaton Interpretation of Quantum Mechanics, Fundamental Theories of Physics, ed. by H. van Beijeren et al., vol. 185 (Springer, Cham, Heidelberg, New York, 2016)

    Google Scholar 

  13. J. Fröhlich, B. Schubnel, Quantum probability theory and the foundations of quantum mechanics, in The Message of Quantum Science, ed. by Ph. Blanchard, J. Fröhlich (Springer, Berlin, 2015)

    Google Scholar 

  14. Ph. Blanchard, J. Fröhlich, B. Schubnel, A Garden of forking paths - the quantum mechanics of histories of events. Nucl. Phys. B 912, 463–484 (2016)

    Google Scholar 

  15. J. Fröhlich, A brief review of the “ETH - approach to quantum mechanics,” in Frontiers in Analysis and Probability, ed. by N. Anantharaman, A. Nikeghbali, M. Rassias (Springer, Cham, 2020)

    Google Scholar 

  16. J. Fröhlich, A. Pizzo, The time-evolution of states in quantum mechanics according to the ETH-approach. Commun. Math. Phys. 389, 1673–1715 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Fröhlich, Relativistic quantum theory, in Do Wave Functions Jump? Perspectives of the Work of GianCarlo Ghirardi, ed. by V. Allori, A. Bassi, D. Dürr, N. Zanghi, Fundamental Theories of Physics (Springer, Cham, 2020). and paper in preparation

    Google Scholar 

  18. J. Fröhlich, Z. Gang, On the Evolution of States in a Quantum-Mechanical Model of Experiments. arXiv:2212.02599. Submitted for publication in Ann. H. Poincaré

  19. R. Haag, Fundamental irreversibility and the concept of events. Commun. Math. Phys. 132, 245–251 (1990); See also: R. Haag, On quantum theory. Int. J. Quant. Inf. 17, 1950037 (2019)

    Google Scholar 

  20. A.M. Gleason, Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–893 (1957); S. Maeda Probability measures on projections in von Neumann algebras. Rev. Math. Phys. 1, 235–290 (1989)

    Google Scholar 

  21. D. Buchholz, Collision theory for massless particles. Commun. Math. Phys. 52, 147–173 (1977); see also: D. Buchholz, J. Roberts, New light on infrared problems: sectors, statistics, symmetries and spectrum. Commun. Math. Phys. 330, 935–972 (2014)

    Google Scholar 

  22. G. Lüders, see [4]; J. Schwinger, The algebra of microscopic measurement. Proc. Natl. Acad. Sci. (USA) 45(10), 1542–1553 (1959); E.P. Wigner, in The Collected Works of Eugene Paul Wigner (Springer, Berlin, 1993)

    Google Scholar 

Download references

Acknowledgements

One of us (J. F.) thanks his collaborators, in particular Baptiste Schubnel, in earlier work on related problems for the pleasure of cooperation, and Carlo Albert, Shelly Goldstein and Erhard Seiler for their very encouraging interest in our efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Fröhlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fröhlich, J., Gang, Z., Pizzo, A. (2024). A Tentative Completion of Quantum Mechanics. In: Bassi, A., Goldstein, S., Tumulka, R., Zanghì, N. (eds) Physics and the Nature of Reality. Fundamental Theories of Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-031-45434-9_12

Download citation

Publish with us

Policies and ethics