Skip to main content
Log in

Ultra–Cold Many–Body Systems and Phenomenology of Gravity Theories with Compact Dimensions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The detection of the number of extra–compact dimensions contained in some gravitational models is analyzed resorting to the discontinuity of the specific heat at the critical temperature of a Bose–Einstein condensate. It is shown that the function relating the number of particles and this discontinuity defines a segment of a straight line whose slope depends upon the number of extra–compact dimensions. The experimental feasibility of the proposal is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amelino-Camelia, G.: Quantum-Spacetime Phenomenology. Living Rev. Relativ. 16, 5 (2013)

    Article  ADS  Google Scholar 

  2. Stachel, J.: The Early History of Quantum Gravity (1916–1940). In: Iyer, B.R., Bhawal, B. (eds.) Black Holes, Gravitational Radiation and the Universe: Essays in Honour of C. V. Vishveshwara, pp. 525–535. Kluwer, Boston (1999)

  3. Amelino–Camelia, G.: Are we at the dawn of quantum, gravity phenomenology? In: Kowalski–Glikman, G. (ed.) Proceedings of the XXXV International Winter School on Theoretical Physics, Polanica, Poland, pp. 1–44. Springer, Berlin (2000)

  4. Kane, G.: How could (should) we make contact between string/M theory and our four-dimensional world? In: Acharya, B., Kane, G., Kumar, P. (eds.) Perspectives on String Phenomenology, World Scientific Publishing Co., pp. 325–350. Singapore (2015)

  5. Zwiebach, B.: A First Course in String Theory. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  6. Griffin, A., Nikuni, T., Zaremba, E.: Bose-Condensed Gases at Finite Temperatures. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  7. Landsberg, P.T.: Thermodynamics and Statistical Mechanics. Dover Publications Inc., New York (1990)

    Google Scholar 

  8. Andrews, M., et al.: Propagation of sound in a Bose-Einstein Condensate. Phys. Rev. Lett. 79, 553 (1997)

    Article  ADS  Google Scholar 

  9. Amelino-Camelia, G., Loret, N., Mandanici, G., Mercati, F.: Gravity in quantum space-time. Int. J. Mod. Phys. D 19, 2385 (2010)

    Article  ADS  MATH  Google Scholar 

  10. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1968)

    Google Scholar 

  11. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  12. Stoof, H.T.C., Dickercheid, D.B.M., Gubbles, K.: Ultra-Cold Quantum Fields. Springer, Dordrecht (2009)

    Google Scholar 

  13. Ueda, M.: Fundamentals and New Frontiers of Bose-Einstein Condensation. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  14. Pathria, R.K.: Statistical Mechanics. Butterworth–Heinemann, Oxford (1996)

  15. Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation. Oxford Science Publications, Oxford (2003)

    MATH  Google Scholar 

  16. Mullin, W.J.: Bose-Einstein condensation in a harmonic trap. J. Low Temp. Phys. 106, 615–641 (1997)

    Article  ADS  Google Scholar 

  17. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Birkhšäuser-Verlag, Berlin (2005)

    MATH  Google Scholar 

  18. Noziéres, P., Pine, D.: The Theory of Quantum Liquids, vol. II. Westview Press, Boulder (1999)

  19. Ensher, J.R., et al.: Bose-Einstein condensation in a dilute gas: Measurement of ground-state occupation. Phys. Rev. Lett. 77, 4984–4987 (1996)

    Article  ADS  Google Scholar 

  20. Hull, R.A., Wilkinson, K.R., Wilks, J.: Using Na J-crystal Scintillation counters for y-ray energy discrimination. Proc. Phys. Soc. A 64, 379–388 (1951)

    Article  ADS  Google Scholar 

  21. Myatt, C.J.: Ph.D. thesis, University of Colorado (1997)

  22. Chapovsky, P.L.: Bose-Einstein condensation of rubidium atoms. JETP Lett. 95, 132–136 (2012)

    Article  ADS  Google Scholar 

  23. Cornish, S.L., Cassettari, D.: Recent progress in Bose-Einstein condensation experiments. Philos. Trans. R. Soc. A 361, 2699–2713 (2003)

    Article  ADS  Google Scholar 

  24. Donley, E.A., et al.: Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412, 295–299 (2001)

    Article  ADS  Google Scholar 

  25. Berlinsky, A.J., Harris, A.B.: Statistical Mechanics. An Introductory Graduate Course. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

H. R. acknowledges CONACyT grant No. 596978 and S. G. the received UAM grant.

Funding

No funding source was involved in the preparation of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the analysis and conception of this manuscript. All drafts of the manuscript were written by AC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Camacho.

Ethics declarations

Competing Interest

The authors have no relevant financial or non-financial interests to disclose

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, S., Camacho, A. & Ríos, H. Ultra–Cold Many–Body Systems and Phenomenology of Gravity Theories with Compact Dimensions. Found Phys 53, 25 (2023). https://doi.org/10.1007/s10701-022-00665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00665-8

Keywords

Navigation